Jena, P. & Solar, Q. Tremendous Atomic Clusters: Design Guidelines and Potential for Constructing Blocks of Supplies. Chem. Rev. 118, 5755–5870 (2018).
Wilcoxon, J. P. & Abrams, B. L. Synthesis, construction and properties of metallic nanoclusters. Chemical Society Opinions 35, 1162–1194 (2006).
Jin, R. Atomically exact metallic nanoclusters: steady sizes and optical properties. Nanoscale 7, 1549–1565 (2015).
Cramer, C. J. & Truhlar, D. G. Density practical principle for transition metals and transition metallic chemistry. Bodily Chemistry Chemical Physics 11, 10757–10816 (2009).
Li, G. & Jin, R. Atomically Exact Gold Nanoclusters as New Mannequin Catalysts. Acc. Chem. Res. 46, 1749–1758 (2013).
Batista, Okay. E. et al. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of chemical info and modeling 60, 537–545 (2020).
Felício-Sousa, P. & Andriani, Okay. F. & Da Silva, J. L. Ab initio investigation of the function of the d-states occupation on the adsorption properties of H 2, CO, CH 4 and CH 3 OH on the Fe 13, Co 13, Ni 13 and Cu 13 clusters. Bodily Chemistry Chemical Physics 23, 8739–8751 (2021).
Jia, X., Li, J. & Wang, E. Cu Nanoclusters with Aggregation Induced Emission Enhancement. Small 9, 3873–3879 (2013).
Zhang, Y. et al. Distinctive size-dependent nanocatalysis revealed on the single atomically exact gold cluster stage. Proceedings of the Nationwide Academy of Sciences 115, 10588 (2018).
Chakraborty, I. & Pradeep, T. Atomically Exact Clusters of Noble Metals: Rising Hyperlink between Atoms and Nanoparticles. Chemical Opinions 117, 8208–8271 (2017).
Watanabe, Y. Atomically exact cluster catalysis in the direction of quantum managed catalysts. Science and Know-how of Superior Supplies 15, 063501 (2014).
Zhu, Y., Qian, H. & Jin, R. Catalysis alternatives of atomically exact gold nanoclusters. Journal of Supplies Chemistry 21, 6793–6799 (2011).
Li, Z. Y. et al. Three-dimensional atomic-scale construction of size-selected gold nanoclusters. Nature 451, 46–48 (2008).
Castleman, A. W. & Khanna, S. N. Clusters, Superatoms, and Constructing Blocks of New Supplies. The Journal of Bodily Chemistry C 113, 2664–2675 (2009).
Wu, S. Q. et al. An adaptive genetic algorithm for crystal construction prediction. J. Phys.: Condens. Matter 26, 035402 (2013).
Curtis, F. et al. GAtor: A First-Rules Genetic Algorithm for Molecular Crystal Construction Prediction. Journal of Chemical Idea and Computation 14, 2246–2264 (2018).
Jennings, P. C., Lysgaard, S., Hummelshøj, J. S., Vegge, T. & Bligaard, T. Genetic algorithms for computational supplies discovery accelerated by machine studying. npj Computational Supplies 5, 46 (2019).
Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. science 220, 671–680 (1983).
Lv, J., Wang, Y., Zhu, L. & Ma, Y. Particle-swarm construction prediction on clusters. The Journal of Chemical Physics 137, 084104 (2012).
Yamashita, T. et al. Crystal construction prediction accelerated by Bayesian optimization. Bodily Overview Supplies 2, 013803 (2018).
Yang, S. & Day, G. M. Exploration and Optimization in Crystal Construction Prediction: Combining Basin Hopping with Quasi-Random Sampling. Journal of Chemical Idea and Computation 17, 1988–1999 (2021).
Stillinger, F. H. Exponential multiplicity of inherent buildings. Phys. Rev. E 59, 48–51 (1999).
Heard, C. J. & Johnston, R. L. in Challenges and Advances in Computational Chemistry and Physics Vol. 23 (eds M. Nguyen & B. Kiran) (Springer, Cham, 2017).
Curtarolo, S. et al. AFLOW: An automated framework for high-throughput supplies discovery. Computational Supplies Science 58, 218–226 (2012).
Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Supplies design and discovery with high-throughput density practical principle: the open quantum supplies database (OQMD). Jom 65, 1501–1509 (2013).
Jain, A. et al. Commentary: The Supplies Undertaking: A supplies genome method to accelerating supplies innovation. APL Supplies 1, 011002 (2013).
Choudhary, Okay. et al. The joint automated repository for numerous built-in simulations (JARVIS) for data-driven supplies design. npj Computational Supplies 6, 1–13 (2020).
Zhou, J. et al. 2DMatPedia, an open computational database of two-dimensional supplies from top-down and bottom-up approaches. Scientific knowledge 6, 1–10 (2019).
Joswig, J.-O. & Springborg, M. Genetic-algorithms seek for world minima of aluminum clusters utilizing a Sutton-Chen potential. Bodily Overview B 68, 085408 (2003).
Shao, X., Liu, X. & Cai, W. Structural optimization of silver clusters as much as 80 atoms with Gupta and Sutton-Chen potentials. Journal of chemical principle and computation 1, 762–768 (2005).
Grigoryan, V. G., Alamanova, D. & Springborg, M. Construction and energetics of CuN clusters with (2 ≤ N ≤ 150): An embedded-atom-method research. Phys. Rev. B 73, 115415 (2006).
Loeffler, T. D. et al. Lively Studying A Neural Community Mannequin For Gold Clusters & Bulk From Sparse First Rules Coaching Knowledge. ChemCatChem 12, 4796–4806 (2020).
Dong, X., Wang, G. M. & Blaisten-Barojas, E. Tight-binding mannequin for calcium nanoclusters: Structural, digital, and dynamical properties. Bodily Overview B 70, 205409 (2004).
Kohn, W. & Sham, L. Phys. Rev. A. Self–Constant Equations Together with Trade and Correlation Results 140, A1133–A1138 (1965).
Wang, Y. et al. Accelerated prediction of atomically exact cluster buildings utilizing on-the-fly machine studying. npj Comput. Mater. 8, 173 (2022).
Shapeev, A. V. Second Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials. Multiscale Mannequin. Simul. 14, 1153–1173 (2016).
Podryabinkin, E. V. & Shapeev, A. V. Lively studying of linearly parametrized interatomic potentials. Computational Supplies Science 140, 171–180 (2017).
Zuo, Y. et al. Efficiency and price evaluation of machine studying interatomic potentials. The Journal of Bodily Chemistry A 124, 731–745 (2020).
Novikov, I. S., Gubaev, Okay., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package deal: second tensor potentials with MPI and lively studying. Machine Studying: Science and Know-how 2, 025002 (2020).
Chaves, A. S., Piotrowski, M. J. & Da Silva, J. L. F. Evolution of the structural, energetic, and digital properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn techniques for n = 2–15): a density practical principle investigation. Bodily Chemistry Chemical Physics 19, 15484–15502 (2017).
Piotrowski, M. J. et al. Theoretical Examine of the Structural, Energetic, and Digital Properties of 55-Atom Steel Nanoclusters: A DFT Investigation inside van der Waals Corrections, Spin–Orbit Coupling, and PBE+U of 42 Steel Techniques. J. Phys. Chem. C 120, 28844–28856 (2016).
Doye, J. P. Okay. & Wales, D. J. Structural penalties of the vary of the interatomic potential A menagerie of clusters. J. Chem. Soc., Faraday Trans. 93, 4233–4243 (1997).
Doye, J. P. Okay., Wales, D. J. & Berry, R. S. The impact of the vary of the potential on the buildings of clusters. J. Chem. Phys. 103, 4234–4249 (1995).
Wales, D. J. & Doye, J. P. Okay. in Giant Clusters of Atoms and Molecules (ed Martin, T. P.) 241–279 (Springer Netherlands, 1996).
Chen, M., Dyer, J. E., Li, Okay. & Dixon, D. A. Prediction of Constructions and Atomization Energies of Small Silver Clusters, (Ag)n, n <100. J. Phys. Chem. A 117, 8298–8313 (2013).
Doye, J. P. Okay. & Wales, D. J. International minima for transition metallic clusters described by Sutton–Chen potentials. New Journal of Chemistry 22, 733–744 (1998).
Galvão, B. R. L. & Viegas, L. P. What Digital Construction Methodology Can Be Used within the International Optimization of Nanoclusters? J. Phys. Chem. A 123, 10454–10462 (2019).
Doye, J. P. Okay. & Wales, D. J. The impact of the vary of the potential on the construction and stability of straightforward liquids: from clusters to bulk, from sodium to C60. J. Phys. B: At. Mol. Choose. Phys. 29, 4859–4894 (1996).
Aguado, A. & López, J. M. Constructions and stabilities of Aln+, Aln, and Aln− (n = 13–34) clusters. J. Chem. Phys. 130, 064704 (2009).
Music, W., Lu, W.-C., Wang, C. Z. & Ho, Okay. M. Magnetic and digital properties of the nickel clusters Nin (n ≤ 30). Comput. Theor. Chem. 978, 41–46 (2011).
Liu, X. J., Hamilton, I., Krawczyk, R. P. & Schwerdtfeger, P. The steadiness of small helical gold nanorods: a relativistic density practical research. J Comput Chem 33, 311–318 (2012).
Fa, W., Luo, C. & Dong, J. Bulk fragment and tubelike buildings of AuN (N = 2-26). Phys. Rev. B 72, 205428 (2005).
Fernández, E. M., Soler, J. M., Garzón, I. L. & Balbás, L. C. Developments within the construction and bonding of noble metallic clusters. Phys. Rev. B 70, 165403 (2004).
Zhao, H.-Y. et al. Structural evolution of Aun (n = 20–32) clusters: Lowest-lying buildings and relativistic results. Phys. Lett. A 374, 1033–1038 (2010).
Sai, L. et al. Structural Evolution of Medium-Sized Phosphorus Clusters (P20–P36) from Ab Initio International Search. J. Cluster Sci. 31, 567–574 (2020).
Tai, T. B. & Nguyen, M. T. Digital construction and photoelectron spectra of Bn with n = 26–29: an summary of structural traits and progress mechanism of boron clusters. Bodily Chemistry Chemical Physics 17, 13672–13679 (2015).
Tai, T. B., Duong, L. V., Pham, H. T., Mai, D. T. T. & Nguyen, M. T. A disk-aromatic bowl cluster B30: towards formation of boron buckyballs. Chem. Commun. 50, 1558–1560 (2014).
Pham, H. T., Duong, L. V., Tam, N. M., Pham-Ho, M. P. & Nguyen, M. T. The boron conundrum: Bonding within the bowl B30 and B36, fullerene B40 and triple ring B42 clusters. Chem. Phys. Lett. 608, 295–302 (2014).
Tai, T. B. & Nguyen, M. T. A brand new chiral boron cluster B44 containing nonagonal holes. Chem. Commun. 52, 1653–1656 (2016).
Pham, H. T., Duong, L. V., Pham, B. Q. & Nguyen, M. T. The 2D-to-3D geometry hopping in small boron clusters: The cost impact. Chem. Phys. Lett. 577, 32–37 (2013).
Tai, T. B., Grant, D. J., Nguyen, M. T. & Dixon, D. A. Thermochemistry and Digital Construction of Small Boron Clusters (Bn, n = 5−13) and Their Anions. J. Phys. Chem. A 114, 994–1007 (2010).
Arvanitidis, A. G., Tai, T. B., Nguyen, M. T. & Ceulemans, A. Quantum guidelines for planar boron nanoclusters. Bodily Chemistry Chemical Physics 16, 18311–18318 (2014).
Doye, J. P. Okay. & Hendy, S. C. On the construction of small lead clusters. The European Bodily Journal D – Atomic, Molecular, Optical and Plasma Physics 22, 99–107 (2003).
Doye, J. P. Okay. Lead clusters: Completely different potentials, totally different buildings. Computational Supplies Science 35, 227–231 (2006).
Götz, D. A., Shayeghi, A., Johnston, R. L., Schwerdtfeger, P. & Schäfer, R. Structural evolution and metallicity of lead clusters. Nanoscale 8, 11153–11160 (2016).
Nava, P., Sierka, M. & Ahlrichs, R. Density practical research of palladium clusters. Bodily Chemistry Chemical Physics 5, 3372–3381 (2003).
Dieterich, J. M., Gerke, S. & Mata, R. A. A First-Rules-Based mostly Potential for the Description of Alkaline Earth Metals. Journal of Atomic, Molecular, and Optical Physics 2012, 648386 (2012).
Doye, J. P. Okay. Figuring out structural patterns in disordered metallic clusters. Phys. Rev. B 68, 195418 (2003).
Kohaut, S. & Springborg, M. Development patterns and structural motifs of cadmium clusters with as much as 60 atoms: disordered or not? Bodily Chemistry Chemical Physics 18, 28524–28537 (2016).
Johansson, M. P. & Pyykkö, P. The significance of being tetrahedral: the cadmium pyramids CdN; N = 4, 10, 20, 35 and 56. Bodily Chemistry Chemical Physics 6, 2907–2909 (2004).
Zhan, L., Chen, J. Z. Y., Liu, W.-Okay. & Lai, S. Okay. Asynchronous multicanonical basin hopping technique and its software to cobalt nanoclusters. The Journal of Chemical Physics 122, 244707 (2005).
Jin, Y. et al. Geometries, stabilities and fragmental channels of impartial and charged sulfur clusters: SnQ (n = 3–20, Q = 0, ±1). Bodily Chemistry Chemical Physics 17, 13590–13597 (2015).
Aguado, A. Discovery of Magnetic Superatoms and Evaluation of van der Waals Dispersion Results in Csn Clusters. J. Phys. Chem. C 116, 6841–6851 (2012).
Calaminici, P., Pérez-Romero, M., Vásquez-Pérez, J. M. & Köster, A. M. On the bottom state construction of impartial Cun (n = 12,14,16,18,20) clusters. Comput. Theor. Chem. 1021, 41–48 (2013).
Alparone, A. Density practical principle Raman spectra of cyclic selenium clusters Sen (n = 5–12). Comput. Theor. Chem. 988, 81–85 (2012).
Elliott, J. A., Shibuta, Y. & Wales, D. J. International minima of transition metallic clusters described by Finnis–Sinclair potentials: A comparability with semi-empirical molecular orbital principle. Philosophical Journal 89, 3311–3332 (2009).
Zhou, R. L. & Pan, B. C. Structural options of silicon clusters Sin (n = 40–57,60). Phys. Lett. A 368, 396–401 (2007).
Yoo, S. & Zeng, X. C. Constructions and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21–Si30. J. Chem. Phys. 124, 054304 (2006).
Goedecker, S., Hellmann, W. & Lenosky, T. International Minimal Dedication of the Born-Oppenheimer Floor inside Density Useful Idea. Phys. Rev. Lett. 95, 055501 (2005).
Yoo, S., Shao, N., Koehler, C., Fraunhaum, T. & Zeng, X. C. Constructions and relative stability of medium-sized silicon clusters. V. Low-lying endohedral fullerenelike clusters Si31–Si40 and Si45. J. Chem. Phys. 124, 164311 (2006).
Yoo, S. & Zeng, X. C. Motif Transition in Development Patterns of Small to Medium-Sized Silicon Clusters. Angew. Chem. Int. Ed. 44, 1491–1494 (2005).
Wang, J., Zhou, X., Wang, G. & Zhao, J. Optimally stuffed fullerene buildings of silicon nanoclusters. Phys. Rev. B 71, 113412 (2005).
Yoo, S., Zhao, J., Wang, J. & Zeng, X. C. Endohedral Silicon Fullerenes SiN (27 ≤ N ≤ 39). Journal of the American Chemical Society 126, 13845–13849 (2004).
Bazterra, V. E. et al. Modified genetic algorithms to mannequin cluster buildings in medium-size silicon clusters. Phys. Rev. A 69, 053202 (2004).
Yoo, S., Zeng, X. C., Zhu, X. & Bai, J. Potential Lowest-Power Geometry of Silicon Clusters Si21 and Si25. Journal of the American Chemical Society 125, 13318–13319 (2003).
Núñez, S., López, J. M. & Aguado, A. Impartial and charged gallium clusters: buildings, bodily properties and implications for the melting options. Nanoscale 4, 6481–6492 (2012).
Drebov, N., Weigend, F. & Ahlrichs, R. Constructions and properties of impartial gallium clusters: A theoretical investigation. J. Chem. Phys. 135, 044314 (2011).
Yoo, S. & Zeng, X. C. Seek for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29. The Journal of Chemical Physics 124, 184309 (2006).
Aguado, A. Constructions, relative stabilities, and digital properties of potassium clusters Okayn (13 ≤ n ≤ 80). Comput. Theor. Chem. 1021, 135–143 (2013).
Hu, H.-S. et al. Theoretical research of the worldwide minima and polarizabilities of small lithium clusters. Chem. Phys. Lett. 644, 235–242 (2016).
Belyaev, S. N., Panteleev, S. V., Ignatov, S. Okay. & Razuvaev, A. G. Structural, digital, thermodynamic and spectral properties of Mgn (n = 2–31) clusters. A DFT research. Comput. Theor. Chem. 1079, 34–46 (2016).
Aguado, A., Vega, A., Lebon, A. & von Issendorff, B. Are zinc clusters actually amorphous? An in depth protocol for finding world minimal buildings of clusters. Nanoscale 10, 19162–19181 (2018).
Noya, E. G., Doye, J. P. Okay., Wales, D. J. & Aguado, A. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour. The European Bodily Journal D 43, 57–60 (2007).
Oganov, A. R., Lyakhov, A. O. & Valle, M. How Evolutionary Crystal Construction Prediction Works—and Why. Acc. Chem. Res. 44, 227–237 (2011).
Trimarchi, G., Freeman, A. J. & Zunger, A. Predicting steady stoichiometries of compounds through evolutionary world space-group optimization. Bodily Overview B 80, 092101 (2009).
Li, X.-T., Yang, X.-B. & Zhao, Y.-J. Geometrical eigen-subspace framework primarily based molecular conformation illustration for environment friendly construction recognition and comparability. J. Chem. Phys. 146, 154108 (2017).
Kresse, G. & Furthmuller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized Gradient Approximation Made Easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).
Gillan, M. Calculation of the emptiness formation vitality in aluminium. Journal of Physics: Condensed Matter 1, 689 (1989).
Štich, I., Automotive, R., Parrinello, M. & Baroni, S. Conjugate gradient minimization of the vitality practical: A brand new technique for digital construction calculation. Bodily Overview B 39, 4997 (1989).
Pulay, P. Convergence acceleration of iterative sequences. The case of scf iteration. Chem. Phys. Lett. 73, 393–398 (1980).
Aarons, J., Sarwar, M., Thompsett, D. & Skylaris, C.-Okay. Perspective: Strategies for large-scale density practical calculations on metallic techniques. The Journal of chemical physics 145, 220901 (2016).
Draxl, C. & Scheffler, M. NOMAD: The FAIR idea for large data-driven supplies science. MRS Bull. 43, 676–682 (2018).
Manna, S. et al. Quantum Cluster Database Model 2022-11-20. NOMAD Repository (2022).