google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
15.5 C
New York
Wednesday, June 7, 2023

A database of low-energy atomically exact nanoclusters


  • Jena, P. & Solar, Q. Tremendous Atomic Clusters: Design Guidelines and Potential for Constructing Blocks of Supplies. Chem. Rev. 118, 5755–5870 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilcoxon, J. P. & Abrams, B. L. Synthesis, construction and properties of metallic nanoclusters. Chemical Society Opinions 35, 1162–1194 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jin, R. Atomically exact metallic nanoclusters: steady sizes and optical properties. Nanoscale 7, 1549–1565 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cramer, C. J. & Truhlar, D. G. Density practical principle for transition metals and transition metallic chemistry. Bodily Chemistry Chemical Physics 11, 10757–10816 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. & Jin, R. Atomically Exact Gold Nanoclusters as New Mannequin Catalysts. Acc. Chem. Res. 46, 1749–1758 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Batista, Okay. E. et al. Ab Initio Investigation of CO2 Adsorption on 13-Atom 4d Clusters. Journal of chemical info and modeling 60, 537–545 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Felício-Sousa, P. & Andriani, Okay. F. & Da Silva, J. L. Ab initio investigation of the function of the d-states occupation on the adsorption properties of H 2, CO, CH 4 and CH 3 OH on the Fe 13, Co 13, Ni 13 and Cu 13 clusters. Bodily Chemistry Chemical Physics 23, 8739–8751 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jia, X., Li, J. & Wang, E. Cu Nanoclusters with Aggregation Induced Emission Enhancement. Small 9, 3873–3879 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. Distinctive size-dependent nanocatalysis revealed on the single atomically exact gold cluster stage. Proceedings of the Nationwide Academy of Sciences 115, 10588 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, I. & Pradeep, T. Atomically Exact Clusters of Noble Metals: Rising Hyperlink between Atoms and Nanoparticles. Chemical Opinions 117, 8208–8271 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Watanabe, Y. Atomically exact cluster catalysis in the direction of quantum managed catalysts. Science and Know-how of Superior Supplies 15, 063501 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhu, Y., Qian, H. & Jin, R. Catalysis alternatives of atomically exact gold nanoclusters. Journal of Supplies Chemistry 21, 6793–6799 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. Y. et al. Three-dimensional atomic-scale construction of size-selected gold nanoclusters. Nature 451, 46–48 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Castleman, A. W. & Khanna, S. N. Clusters, Superatoms, and Constructing Blocks of New Supplies. The Journal of Bodily Chemistry C 113, 2664–2675 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. Q. et al. An adaptive genetic algorithm for crystal construction prediction. J. Phys.: Condens. Matter 26, 035402 (2013).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • Curtis, F. et al. GAtor: A First-Rules Genetic Algorithm for Molecular Crystal Construction Prediction. Journal of Chemical Idea and Computation 14, 2246–2264 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jennings, P. C., Lysgaard, S., Hummelshøj, J. S., Vegge, T. & Bligaard, T. Genetic algorithms for computational supplies discovery accelerated by machine studying. npj Computational Supplies 5, 46 (2019).

    Article 

    Google Scholar
     

  • Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. science 220, 671–680 (1983).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lv, J., Wang, Y., Zhu, L. & Ma, Y. Particle-swarm construction prediction on clusters. The Journal of Chemical Physics 137, 084104 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Yamashita, T. et al. Crystal construction prediction accelerated by Bayesian optimization. Bodily Overview Supplies 2, 013803 (2018).

    Article 

    Google Scholar
     

  • Yang, S. & Day, G. M. Exploration and Optimization in Crystal Construction Prediction: Combining Basin Hopping with Quasi-Random Sampling. Journal of Chemical Idea and Computation 17, 1988–1999 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stillinger, F. H. Exponential multiplicity of inherent buildings. Phys. Rev. E 59, 48–51 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Heard, C. J. & Johnston, R. L. in Challenges and Advances in Computational Chemistry and Physics Vol. 23 (eds M. Nguyen & B. Kiran) (Springer, Cham, 2017).

  • Curtarolo, S. et al. AFLOW: An automated framework for high-throughput supplies discovery. Computational Supplies Science 58, 218–226 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Supplies design and discovery with high-throughput density practical principle: the open quantum supplies database (OQMD). Jom 65, 1501–1509 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Jain, A. et al. Commentary: The Supplies Undertaking: A supplies genome method to accelerating supplies innovation. APL Supplies 1, 011002 (2013).

    Article 

    Google Scholar
     

  • Choudhary, Okay. et al. The joint automated repository for numerous built-in simulations (JARVIS) for data-driven supplies design. npj Computational Supplies 6, 1–13 (2020).

    Article 

    Google Scholar
     

  • Zhou, J. et al. 2DMatPedia, an open computational database of two-dimensional supplies from top-down and bottom-up approaches. Scientific knowledge 6, 1–10 (2019).

    Article 

    Google Scholar
     

  • Joswig, J.-O. & Springborg, M. Genetic-algorithms seek for world minima of aluminum clusters utilizing a Sutton-Chen potential. Bodily Overview B 68, 085408 (2003).

    Article 

    Google Scholar
     

  • Shao, X., Liu, X. & Cai, W. Structural optimization of silver clusters as much as 80 atoms with Gupta and Sutton-Chen potentials. Journal of chemical principle and computation 1, 762–768 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grigoryan, V. G., Alamanova, D. & Springborg, M. Construction and energetics of CuN clusters with (2 ≤ N ≤ 150): An embedded-atom-method research. Phys. Rev. B 73, 115415 (2006).

    Article 

    Google Scholar
     

  • Loeffler, T. D. et al. Lively Studying A Neural Community Mannequin For Gold Clusters & Bulk From Sparse First Rules Coaching Knowledge. ChemCatChem 12, 4796–4806 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Dong, X., Wang, G. M. & Blaisten-Barojas, E. Tight-binding mannequin for calcium nanoclusters: Structural, digital, and dynamical properties. Bodily Overview B 70, 205409 (2004).

    Article 

    Google Scholar
     

  • Kohn, W. & Sham, L. Phys. Rev. A. Self–Constant Equations Together with Trade and Correlation Results 140, A1133–A1138 (1965).


    Google Scholar
     

  • Wales, D. J. et al. The Cambridge Cluster Database (2022).

  • Wang, Y. et al. Accelerated prediction of atomically exact cluster buildings utilizing on-the-fly machine studying. npj Comput. Mater. 8, 173 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Shapeev, A. V. Second Tensor Potentials: A Class of Systematically Improvable Interatomic Potentials. Multiscale Mannequin. Simul. 14, 1153–1173 (2016).

    Article 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Podryabinkin, E. V. & Shapeev, A. V. Lively studying of linearly parametrized interatomic potentials. Computational Supplies Science 140, 171–180 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zuo, Y. et al. Efficiency and price evaluation of machine studying interatomic potentials. The Journal of Bodily Chemistry A 124, 731–745 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Novikov, I. S., Gubaev, Okay., Podryabinkin, E. V. & Shapeev, A. V. The MLIP package deal: second tensor potentials with MPI and lively studying. Machine Studying: Science and Know-how 2, 025002 (2020).


    Google Scholar
     

  • Chaves, A. S., Piotrowski, M. J. & Da Silva, J. L. F. Evolution of the structural, energetic, and digital properties of the 3d, 4d, and 5d transition-metal clusters (30 TMn techniques for n = 2–15): a density practical principle investigation. Bodily Chemistry Chemical Physics 19, 15484–15502 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Piotrowski, M. J. et al. Theoretical Examine of the Structural, Energetic, and Digital Properties of 55-Atom Steel Nanoclusters: A DFT Investigation inside van der Waals Corrections, Spin–Orbit Coupling, and PBE+U of 42 Steel Techniques. J. Phys. Chem. C 120, 28844–28856 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Doye, J. P. Okay. & Wales, D. J. Structural penalties of the vary of the interatomic potential A menagerie of clusters. J. Chem. Soc., Faraday Trans. 93, 4233–4243 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Doye, J. P. Okay., Wales, D. J. & Berry, R. S. The impact of the vary of the potential on the buildings of clusters. J. Chem. Phys. 103, 4234–4249 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Wales, D. J. & Doye, J. P. Okay. in Giant Clusters of Atoms and Molecules (ed Martin, T. P.) 241–279 (Springer Netherlands, 1996).

  • Chen, M., Dyer, J. E., Li, Okay. & Dixon, D. A. Prediction of Constructions and Atomization Energies of Small Silver Clusters, (Ag)n, n <100. J. Phys. Chem. A 117, 8298–8313 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doye, J. P. Okay. & Wales, D. J. International minima for transition metallic clusters described by Sutton–Chen potentials. New Journal of Chemistry 22, 733–744 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Galvão, B. R. L. & Viegas, L. P. What Digital Construction Methodology Can Be Used within the International Optimization of Nanoclusters? J. Phys. Chem. A 123, 10454–10462 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Doye, J. P. Okay. & Wales, D. J. The impact of the vary of the potential on the construction and stability of straightforward liquids: from clusters to bulk, from sodium to C60. J. Phys. B: At. Mol. Choose. Phys. 29, 4859–4894 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Aguado, A. & López, J. M. Constructions and stabilities of Aln+, Aln, and Aln (n = 13–34) clusters. J. Chem. Phys. 130, 064704 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Music, W., Lu, W.-C., Wang, C. Z. & Ho, Okay. M. Magnetic and digital properties of the nickel clusters Nin (n ≤ 30). Comput. Theor. Chem. 978, 41–46 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. J., Hamilton, I., Krawczyk, R. P. & Schwerdtfeger, P. The steadiness of small helical gold nanorods: a relativistic density practical research. J Comput Chem 33, 311–318 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Fa, W., Luo, C. & Dong, J. Bulk fragment and tubelike buildings of AuN (N = 2-26). Phys. Rev. B 72, 205428 (2005).

    Article 

    Google Scholar
     

  • Fernández, E. M., Soler, J. M., Garzón, I. L. & Balbás, L. C. Developments within the construction and bonding of noble metallic clusters. Phys. Rev. B 70, 165403 (2004).

    Article 

    Google Scholar
     

  • Zhao, H.-Y. et al. Structural evolution of Aun (n = 20–32) clusters: Lowest-lying buildings and relativistic results. Phys. Lett. A 374, 1033–1038 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Sai, L. et al. Structural Evolution of Medium-Sized Phosphorus Clusters (P20–P36) from Ab Initio International Search. J. Cluster Sci. 31, 567–574 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Tai, T. B. & Nguyen, M. T. Digital construction and photoelectron spectra of Bn with n = 26–29: an summary of structural traits and progress mechanism of boron clusters. Bodily Chemistry Chemical Physics 17, 13672–13679 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tai, T. B., Duong, L. V., Pham, H. T., Mai, D. T. T. & Nguyen, M. T. A disk-aromatic bowl cluster B30: towards formation of boron buckyballs. Chem. Commun. 50, 1558–1560 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Pham, H. T., Duong, L. V., Tam, N. M., Pham-Ho, M. P. & Nguyen, M. T. The boron conundrum: Bonding within the bowl B30 and B36, fullerene B40 and triple ring B42 clusters. Chem. Phys. Lett. 608, 295–302 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Tai, T. B. & Nguyen, M. T. A brand new chiral boron cluster B44 containing nonagonal holes. Chem. Commun. 52, 1653–1656 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Pham, H. T., Duong, L. V., Pham, B. Q. & Nguyen, M. T. The 2D-to-3D geometry hopping in small boron clusters: The cost impact. Chem. Phys. Lett. 577, 32–37 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tai, T. B., Grant, D. J., Nguyen, M. T. & Dixon, D. A. Thermochemistry and Digital Construction of Small Boron Clusters (Bn, n = 5−13) and Their Anions. J. Phys. Chem. A 114, 994–1007 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Arvanitidis, A. G., Tai, T. B., Nguyen, M. T. & Ceulemans, A. Quantum guidelines for planar boron nanoclusters. Bodily Chemistry Chemical Physics 16, 18311–18318 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doye, J. P. Okay. & Hendy, S. C. On the construction of small lead clusters. The European Bodily Journal D – Atomic, Molecular, Optical and Plasma Physics 22, 99–107 (2003).

    CAS 

    Google Scholar
     

  • Doye, J. P. Okay. Lead clusters: Completely different potentials, totally different buildings. Computational Supplies Science 35, 227–231 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Götz, D. A., Shayeghi, A., Johnston, R. L., Schwerdtfeger, P. & Schäfer, R. Structural evolution and metallicity of lead clusters. Nanoscale 8, 11153–11160 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Nava, P., Sierka, M. & Ahlrichs, R. Density practical research of palladium clusters. Bodily Chemistry Chemical Physics 5, 3372–3381 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Dieterich, J. M., Gerke, S. & Mata, R. A. A First-Rules-Based mostly Potential for the Description of Alkaline Earth Metals. Journal of Atomic, Molecular, and Optical Physics 2012, 648386 (2012).

    Article 

    Google Scholar
     

  • Doye, J. P. Okay. Figuring out structural patterns in disordered metallic clusters. Phys. Rev. B 68, 195418 (2003).

    Article 

    Google Scholar
     

  • Kohaut, S. & Springborg, M. Development patterns and structural motifs of cadmium clusters with as much as 60 atoms: disordered or not? Bodily Chemistry Chemical Physics 18, 28524–28537 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Johansson, M. P. & Pyykkö, P. The significance of being tetrahedral: the cadmium pyramids CdN; N = 4, 10, 20, 35 and 56. Bodily Chemistry Chemical Physics 6, 2907–2909 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zhan, L., Chen, J. Z. Y., Liu, W.-Okay. & Lai, S. Okay. Asynchronous multicanonical basin hopping technique and its software to cobalt nanoclusters. The Journal of Chemical Physics 122, 244707 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Jin, Y. et al. Geometries, stabilities and fragmental channels of impartial and charged sulfur clusters: SnQ (n = 3–20, Q = 0, ±1). Bodily Chemistry Chemical Physics 17, 13590–13597 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguado, A. Discovery of Magnetic Superatoms and Evaluation of van der Waals Dispersion Results in Csn Clusters. J. Phys. Chem. C 116, 6841–6851 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Calaminici, P., Pérez-Romero, M., Vásquez-Pérez, J. M. & Köster, A. M. On the bottom state construction of impartial Cun (n = 12,14,16,18,20) clusters. Comput. Theor. Chem. 1021, 41–48 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Alparone, A. Density practical principle Raman spectra of cyclic selenium clusters Sen (n = 5–12). Comput. Theor. Chem. 988, 81–85 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Elliott, J. A., Shibuta, Y. & Wales, D. J. International minima of transition metallic clusters described by Finnis–Sinclair potentials: A comparability with semi-empirical molecular orbital principle. Philosophical Journal 89, 3311–3332 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, R. L. & Pan, B. C. Structural options of silicon clusters Sin (n = 40–57,60). Phys. Lett. A 368, 396–401 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Yoo, S. & Zeng, X. C. Constructions and relative stability of medium-sized silicon clusters. IV. Motif-based low-lying clusters Si21–Si30. J. Chem. Phys. 124, 054304 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Goedecker, S., Hellmann, W. & Lenosky, T. International Minimal Dedication of the Born-Oppenheimer Floor inside Density Useful Idea. Phys. Rev. Lett. 95, 055501 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, S., Shao, N., Koehler, C., Fraunhaum, T. & Zeng, X. C. Constructions and relative stability of medium-sized silicon clusters. V. Low-lying endohedral fullerenelike clusters Si31–Si40 and Si45. J. Chem. Phys. 124, 164311 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, S. & Zeng, X. C. Motif Transition in Development Patterns of Small to Medium-Sized Silicon Clusters. Angew. Chem. Int. Ed. 44, 1491–1494 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wang, J., Zhou, X., Wang, G. & Zhao, J. Optimally stuffed fullerene buildings of silicon nanoclusters. Phys. Rev. B 71, 113412 (2005).

    Article 

    Google Scholar
     

  • Yoo, S., Zhao, J., Wang, J. & Zeng, X. C. Endohedral Silicon Fullerenes SiN (27 ≤ N ≤ 39). Journal of the American Chemical Society 126, 13845–13849 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bazterra, V. E. et al. Modified genetic algorithms to mannequin cluster buildings in medium-size silicon clusters. Phys. Rev. A 69, 053202 (2004).

    Article 

    Google Scholar
     

  • Yoo, S., Zeng, X. C., Zhu, X. & Bai, J. Potential Lowest-Power Geometry of Silicon Clusters Si21 and Si25. Journal of the American Chemical Society 125, 13318–13319 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Núñez, S., López, J. M. & Aguado, A. Impartial and charged gallium clusters: buildings, bodily properties and implications for the melting options. Nanoscale 4, 6481–6492 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Drebov, N., Weigend, F. & Ahlrichs, R. Constructions and properties of impartial gallium clusters: A theoretical investigation. J. Chem. Phys. 135, 044314 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Yoo, S. & Zeng, X. C. Seek for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21–Ge29. The Journal of Chemical Physics 124, 184309 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aguado, A. Constructions, relative stabilities, and digital properties of potassium clusters Okayn (13 ≤ n ≤ 80). Comput. Theor. Chem. 1021, 135–143 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hu, H.-S. et al. Theoretical research of the worldwide minima and polarizabilities of small lithium clusters. Chem. Phys. Lett. 644, 235–242 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Belyaev, S. N., Panteleev, S. V., Ignatov, S. Okay. & Razuvaev, A. G. Structural, digital, thermodynamic and spectral properties of Mgn (n = 2–31) clusters. A DFT research. Comput. Theor. Chem. 1079, 34–46 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Aguado, A., Vega, A., Lebon, A. & von Issendorff, B. Are zinc clusters actually amorphous? An in depth protocol for finding world minimal buildings of clusters. Nanoscale 10, 19162–19181 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Noya, E. G., Doye, J. P. Okay., Wales, D. J. & Aguado, A. Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour. The European Bodily Journal D 43, 57–60 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Oganov, A. R., Lyakhov, A. O. & Valle, M. How Evolutionary Crystal Construction Prediction Works—and Why. Acc. Chem. Res. 44, 227–237 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trimarchi, G., Freeman, A. J. & Zunger, A. Predicting steady stoichiometries of compounds through evolutionary world space-group optimization. Bodily Overview B 80, 092101 (2009).

    Article 

    Google Scholar
     

  • Li, X.-T., Yang, X.-B. & Zhao, Y.-J. Geometrical eigen-subspace framework primarily based molecular conformation illustration for environment friendly construction recognition and comparability. J. Chem. Phys. 146, 154108 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kresse, G. & Furthmuller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized Gradient Approximation Made Easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave technique. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Gillan, M. Calculation of the emptiness formation vitality in aluminium. Journal of Physics: Condensed Matter 1, 689 (1989).

    CAS 

    Google Scholar
     

  • Štich, I., Automotive, R., Parrinello, M. & Baroni, S. Conjugate gradient minimization of the vitality practical: A brand new technique for digital construction calculation. Bodily Overview B 39, 4997 (1989).

    Article 

    Google Scholar
     

  • Pulay, P. Convergence acceleration of iterative sequences. The case of scf iteration. Chem. Phys. Lett. 73, 393–398 (1980).

    Article 
    CAS 

    Google Scholar
     

  • Aarons, J., Sarwar, M., Thompsett, D. & Skylaris, C.-Okay. Perspective: Strategies for large-scale density practical calculations on metallic techniques. The Journal of chemical physics 145, 220901 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Draxl, C. & Scheffler, M. NOMAD: The FAIR idea for large data-driven supplies science. MRS Bull. 43, 676–682 (2018).

    Article 

    Google Scholar
     

  • Manna, S. et al. Quantum Cluster Database Model 2022-11-20. NOMAD Repository  (2022).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles