Cole, J. P., Hanlon, A. M., Rodriguez, Okay. J. & Berda, E. B. Protein-like construction and exercise in artificial polymers. J. Polym. Sci. A Polym. Chem. 55, 191–206 (2017).
Rothfuss, H., Knofel, N. D., Roesky, P. W. & Barner-Kowollik, C. Single-chain nanoparticles as catalytic nanoreactors. J. Am. Chem. Soc. 140, 5875–5881 (2018).
Bonduelle, C. Secondary buildings of artificial polypeptide polymers. Polym. Chem. 9, 1517–1529 (2018).
Varanko, A. Okay., Su, J. C. & Chilkoti, A. Elastin-like polypeptides for biomedical functions. Annu. Rev. Biomed. Eng. 22, 343–369 (2020).
Callmann, C. E., Thompson, M. P. & Gianneschi, N. C. Poly(peptide): synthesis, construction, and performance of peptide–polymer amphiphiles and protein-like polymers. Acc. Chem. Res. 53, 400–413 (2020).
Jiang, T. et al. Single-chain heteropolymers transport protons selectively and quickly. Nature 577, 216–220 (2020).
Panganiban, B. et al. Random heteropolymers protect protein perform in international environments. Science 359, 1239–1243 (2018).
Hilburg, S. L., Ruan, Z. Y., Xu, T. & Alexander-Katz, A. Habits of protein-inspired artificial random heteropolymers. Macromolecules 53, 9187–9199 (2020).
Han, Z., Hilburg, S. L. & Alexander-Katz, A. Pressured unfolding of protein-inspired single-chain random heteropolymers. Macromolecules 55, 1295–1309 (2022).
Music, Z. Y., Tan, Z. Z. & Cheng, J. J. Current advances and future views of artificial polypeptides from N-carboxyanhydrides. Macromolecules 52, 8521–8539 (2019).
Music, Z. Y. et al. Artificial polypeptides: from polymer design to supramolecular meeting and biomedical utility. Chem. Soc. Rev. 46, 6570–6599 (2017).
Zhou, X. F. & Li, Z. B. Advances and biomedical functions of polypeptide hydrogels derived from α-amino acid N-carboxyanhydride (NCA) polymerizations. Adv. Healthcare Mater. 7, e1800020 (2018).
Deng, C. et al. Purposeful polypeptide and hybrid supplies: precision synthesis by way of α-amino acid N-carboxyanhydride polymerization and rising biomedical functions. Prog. Polym. Sci. 39, 330–364 (2014).
Hou, Y. Q. & Lu, H. Protein PEPylation: a brand new paradigm of protein–polymer conjugation. Bioconjugate Chem. 30, 1604–1616 (2019).
Deming, T. J. Artificial polypeptides for biomedical functions. Prog. Polym. Sci. 32, 858–875 (2007).
Liu, Y., Li, D., Ding, J. X. & Chen, X. S. Managed synthesis of polypeptides. Chin. Chem. Lett. 31, 3001–3014 (2020).
Ruggieri, M., Avolio, C., Livrea, P. & Trojano, M. Glatiramer acetate in a number of sclerosis: a evaluate. CNS Drug Rev. 13, 178–191 (2007).
Taylor, S. V., Walter, Okay. U., Kast, P. & Hilvert, D. Looking sequence area for protein catalysts. Proc. Natl Acad. Sci. USA 98, 10596–10601 (2001).
Reis, M. et al. Machine-learning-guided discovery of F-19 MRI brokers enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 17677–17689 (2021).
Macarron, R. et al. Affect of high-throughput screening in biomedical analysis. Nat. Rev. Drug Discov. 10, 188–195 (2011).
Coley, C. W., Eyke, N. S. & Jensen, Okay. F. Autonomous discovery within the chemical sciences half I: progress. Angew. Chem. Int. Ed. 59, 22858–22893 (2020).
Yang, L. L. et al. Excessive-throughput strategies within the discovery and research of biomaterials and materiobiology. Chem. Rev. 121, 4561–4677 (2021).
Soheilmoghaddam, F., Rumble, M. & Cooper-White, J. Excessive-throughput routes to biomaterials discovery. Chem. Rev. 121, 10792–10864 (2021).
DeBenedictis, E. A. et al. Systematic molecular evolution permits sturdy biomolecule discovery. Nat. Strategies 19, 55–64 (2022).
Gromski, P. S., Granda, J. M. & Cronin, L. Common chemical synthesis and discovery with ‘the Chemputer’. Developments Chem. 2, 4–12 (2020).
Pollice, R. et al. Knowledge-driven methods for accelerated supplies design. Acc. Chem. Res. 54, 849–860 (2021).
Correa-Baena, J. P. et al. Accelerating supplies improvement by way of automation, machine studying, and high-performance computing. Joule 2, 1410–1420 (2018).
Yang, Okay. Okay., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Strategies 16, 687–694 (2019).
Vamathevan, J. et al. Purposes of machine studying in drug discovery and improvement. Nat. Rev. Drug Discov. 18, 463–477 (2019).
Kumar, R. et al. Environment friendly polymer-mediated supply of gene-editing ribonucleoprotein payloads by way of combinatorial design, parallelized experimentation, and machine studying. ACS Nano. 14, 17626–17639 (2020).
Kumar, R., Le, N., Oviedo, F., Brown, M. E. & Reineke, T. M. Combinatorial polycation synthesis and causal machine studying reveal divergent polymer design guidelines for efficient pDNA and ribonucleoprotein supply. JACS Au 2, 428–442 (2022).
Goldberg, M., Mahon, Okay. & Anderson, D. Combinatorial and rational approaches to polymer synthesis for drugs. Adv. Drug. Deliv. Rev. 60, 971–978 (2008).
Baudis, S. & Behl, M. Excessive-throughput and combinatorial approaches for the event of multifunctional polymers. Macromol. Speedy Commun. 43, 2100400 (2022).
Holmes, P. F., Bohrer, M. & Kohn, J. Exploration of polymethacrylate construction–property correlations: advances in direction of combinatorial and high-throughput strategies for biomaterials discovery. Prog. Polym. Sci. 33, 787–796 (2008).
Gormley, A. J. & Webb, M. A. Machine studying in combinatorial polymer chemistry. Nat. Rev. Mater. 6, 642–644 (2021).
Upadhya, R. et al. Automation and data-driven design of polymer therapeutics. Adv. Drug. Deliv. Rev. 171, 1–28 (2021).
Patel, R. A., Borca, C. H. & Webb, M. A. Featurization methods for polymer sequence or composition design by machine studying. Mol. Syst. Des. Eng. 7, 661–676 (2022).
Oliver, S., Zhao, L., Gormley, A. J., Chapman, R. & Boyer, C. Dwelling within the quick lane excessive throughput managed/residing radical polymerization. Macromolecules 52, 3–23 (2019).
Lynn, D. M., Anderson, D. G., Putnam, D. & Langer, R. Accelerated discovery of artificial transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123, 8155–8156 (2001).
Inexperienced, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library strategy yields perception into nonviral gene supply. Acc. Chem. Res. 41, 749–759 (2008).
Gormley, A. J. et al. An oxygen-tolerant PET–RAFT polymerization for screening construction–exercise relationships. Angew. Chem. Int. Ed. 57, 1557–1562 (2018).
Judzewitsch, P. R. et al. Excessive-throughput course of for the invention of antimicrobial polymers and their upscaled manufacturing by way of move polymerization. Macromolecules 53, 631–639 (2020).
Kosuri, S. et al. Machine-assisted discovery of chondroitinase ABC complexes towards sustained neural regeneration. Adv. Healthcare Mater. 11, 2102101 (2022).
Tamasi, M. J. et al. Machine studying on a robotic platform for the design of polymer–protein hybrids. Adv. Mater. 34, 2201809 (2022).
Gauthier, M. A., Gibson, M. I. & Klok, H. A. Synthesis of practical polymers by post-polymerization modification. Angew. Chem. Int. Ed. 48, 48–58 (2009).
Gunay, Okay. A., Theato, P. & Klok, H. A. Standing on the shoulders of Hermann Staudinger: post-polymerization modification from previous to current. J. Polym. Sci. A Polym. Chem. 51, 1–28 (2013).
Zhong, Y. B., Zeberl, B. J., Wang, X. & Luo, J. T. Combinatorial approaches in post-polymerization modification for rational improvement of therapeutic supply methods. Acta Biomater. 73, 21–37 (2018).
Ladmiral, V. et al. Synthesis of neoglycopolymers by a mixture of “click on chemistry” and residing radical polymerization. J. Am. Chem. Soc. 128, 4823–4830 (2006).
Wong, S. Y., Sood, N. & Putnam, D. Combinatorial analysis of cations, pH-sensitive and hydrophobic moieties for polymeric vector design. Mol. Ther. 17, 480–490 (2009).
Pedone, E., Li, X. W., Koseva, N., Alpar, O. & Brocchini, S. An info wealthy biomedical polymer library. J. Mater. Chem. 13, 2825–2837 (2003).
Yan, Y. F. et al. Purposeful polyesters allow selective siRNA supply to lung most cancers over matched regular cells. Proc. Natl. Acad. Sci. USA 113, E5702–E5710 (2016).
Wyrsta, M. D., Cogen, A. L. & Deming, T. J. A parallel artificial strategy for the evaluation of membrane interactive copolypeptides. J. Am. Chem. Soc. 123, 12919–12920 (2001).
Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 116, 786–808 (2016).
Deming, T. J. Purposeful modification of thioether teams in peptides, polypeptides, and proteins. Bioconjugate Chem. 28, 691–700 (2017).
Lu, H. et al. Ring-opening polymerization of γ-(4-vinylbenzyl)-l-glutamate N-carboxyanhydride for the synthesis of practical polypeptides. Macromolecules 44, 6237–6240 (2011).
Zhou, J. R. et al. A easy and versatile artificial technique to practical polypeptides by way of vinyl sulfone-substituted l-cysteine N-carboxyanhydride. Macromolecules 46, 6723–6730 (2013).
Engler, A. C., Lee, H. I. & Hammond, P. T. Extremely environment friendly “grafting onto” a polypeptide spine utilizing click on chemistry. Angew. Chem. Int. Ed. 48, 9334–9338 (2009).
Krannig, Okay. S. & Schlaad, H. pH-responsive bioactive glycopolypeptides with enhanced helicity and solubility in aqueous resolution. J. Am. Chem. Soc. 134, 18542–18545 (2012).
Cao, J. B. et al. Non-ionic water-soluble “clickable” α-helical polypeptides: synthesis, characterization and aspect chain modification. Polym. Chem. 6, 1226–1229 (2015).
Xie, Y., Lopez-Silva, T. L. & Schneider, J. P. Hydrophilic azide-containing amino acid to reinforce the solubility of peptides for SPAAC reactions. Org. Lett. 24, 7378–7382 (2022).
Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. & Berkland, C. J. Sensible concerns, challenges, and limitations of bioconjugation by way of azide–alkyne cycloaddition. Bioconjugate Chem. 29, 686–701 (2018).
Liu, J., Chen, Q. Q. & Rozovsky, S. Using selenocysteine for expressed protein ligation and bioconjugations. J. Am. Chem. Soc. 139, 3430–3437 (2017).
Zhao, Z. G., Shimon, D. & Metanis, N. Chemoselective copper-mediated modification of selenocysteines in peptides and proteins. J. Am. Chem. Soc. 143, 12817–12824 (2021).
Quaderer, R., Stitching, A. & Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta 84, 1197–1206 (2001).
Li, X. et al. Steady and potent selenomab–drug conjugates. Cell Chem. Biol. 24, 433–442 e436 (2017).
Li, X. L. et al. Website-specific twin antibody conjugation by way of engineered cysteine and selenocysteine residues. Bioconjugate Chem. 26, 2243–2248 (2015).
Sayers, J. et al. Development of difficult proline–proline junctions by way of diselenide–selenoester ligation chemistry. J. Am. Chem. Soc. 140, 13327–13334 (2018).
Flemer, S. Jr. Selenol defending teams in natural chemistry: particular emphasis on selenocysteine Se-protection in stable section peptide synthesis. Molecules. 16, 3232–3251 (2011).
Sharpless, Okay. B., Lauer, R. F. & Teranishi, A. Y. Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 95, 6137–6139 (1973).
Wu, J. A. et al. The functionalization of poly(ε-caprolactone) as a flexible platform utilizing ε-(α-phenylseleno) caprolactone as a monomer. Polym. Chem. 10, 3851–3858 (2019).
Yu, L., Zhang, M., Du, F. S. & Li, Z. C. ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polym. Chem. 9, 3762–3773 (2018).
Wang, L. et al. ROS-triggered degradation of selenide-containing polymers based mostly on selenoxide elimination. Polym. Chem. 10, 2039–2046 (2019).
Reich, H. J., Wollowitz, S., Development, J. E., Chow, F. & Wendelborn, D. F. Syn elimination of alkyl selenoxides. Aspect reactions involving selenenic acids. Structural and solvent results on charges. J. Org. Chem. 43, 1697–1705 (1978).
Yang, Y. et al. Genetically encoded releasable photo-cross-linking methods for learning protein–protein interactions in residing cells. Nat. Protoc. 12, 2147–2168 (2017).
Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).
Lin, S. et al. Genetically encoded cleavable protein photo-cross-linker. J. Am. Chem. Soc. 136, 11860–11863 (2014).
Tian, Z. Y., Zhang, Z. C., Wang, S. & Lu, H. A moisture-tolerant path to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat. Commun. 12, 5810 (2021).
Wu, G. et al. Synthesis of water soluble and multi-responsive selenopolypeptides by way of ring-opening polymerization of N-carboxyanhydrides. Chem. Commun. 55, 7860–7863 (2019).
Lin, Y. Y. A. et al. Speedy cross-metathesis for reversible protein modifications by way of chemical entry to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc. 135, 12156–12159 (2013).
Reddy, Okay. M. & Mugesh, G. Utility of dehydroalanine as a constructing block for the synthesis of selenocysteine-containing peptides. RSC Adv. 9, 34–43 (2019).
Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).
Ahn, G. et al. LYTACs that interact the asialoglycoprotein receptor for focused protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).
Delaveris, C. S., Chiu, S. H., Riley, N. M. & Bertozzi, C. R. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc. Natl Acad. Sci. USA 118, e2012408118 (2021).
Du, J. J. et al. Glycopeptide ligation by way of direct aminolysis of selenoester. Chin. Chem. Lett. 29, 1127–1130 (2018).
Temperini, A., Piazzolla, F., Minuti, L., Curini, M. & Siciliano, C. Normal, gentle, and metal-free synthesis of phenyl selenoesters from anhydrides and their use in peptide synthesis. J. Org. Chem. 82, 4588–4603 (2017).
Chen, L. H. et al. Polymer informatics: present standing and significant subsequent steps. Mater. Sci. Eng. R Rep. 144, 100595 (2021).
Upadhya, R., Kanagala, M. J. & Gormley, A. J. Purifying low-volume combinatorial polymer libraries with gel filtration columns. Macromol. Speedy Commun. 40, 1900528 (2019).
Barbosa, N. V. et al. Organoselenium compounds as mimics of selenoproteins and thiol modifier brokers. Metallomics 9, 1703–1734 (2017).
Huang, X., Liu, X. M., Luo, Q. A., Liu, J. Q. & Shen, J. C. Synthetic selenoenzymes: designed and redesigned. Chem. Soc. Rev. 40, 1171–1184 (2011).
Seibt, T. M., Proneth, B. & Conrad, M. Position of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 133, 144–152 (2019).
Yant, L. J. et al. The selenoprotein GPX4 is important for mouse improvement and protects from radiation and oxidative harm insults. Free Radic. Biol. Med. 34, 496–502 (2003).
Xu, C. X. et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to maintain Treg cell activation and suppression of antitumor immunity.Cell Rep. 35, 109235 (2021).
Parnham, M. & Sies, H. Ebselen: potential remedy for cerebral ischaemia. Professional Opin. Investig. Medicine 9, 607–619 (2000).
Landgraf, A. D. et al. Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem. Neurosci. 11, 3008–3016 (2020).
Yamagata, Okay., Ichinose, S., Miyashita, A. & Tagami, M. Protecting results of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience. 153, 428–435 (2008).
Paglia, D. E. & Valentine, W. N. Research on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967).
Shahriari, B., Swersky, Okay., Wang, Z. Y., Adams, R. P. & de Freitas, N. Taking the human out of the loop: a evaluate of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).
Shields, B. J. et al. Bayesian response optimization as a instrument for chemical synthesis. Nature 590, 89–96 (2021).
Nambiar, A. M. Okay. et al. Bayesian optimization of computer-proposed multistep artificial routes on an automatic robotic move platform. ACS Cent. Sci. 8, 825–836 (2022).
Hase, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).
Balandat, M. et al. BoTorch: a framework for environment friendly Monte-Carlo Bayesian optimization. Adv. Neural Inf. Course of. Syst. 33, 21524–21538 (2020).
Shao, L. X., Li, Y. M., Lu, J. M. & Jiang, X. F. Current progress in selenium-catalyzed natural reactions. Org. Chem. Entrance. 6, 2999–3041 (2019).
Reich, H. J. & Hondal, R. J. Why nature selected selenium. ACS Chem. Biol. 11, 821–841 (2016).
Xia, J. H., Li, T. Y., Lu, C. J. & Xu, H. P. Selenium-containing polymers: views towards various functions in each adaptive and biomedical supplies. Macromolecules 51, 7435–7455 (2018).
Li, Q. L. et al. Organoselenium chemistry-based polymer synthesis. Org. Chem. Entrance. 7, 2815–2841 (2020).