google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
13.8 C
New York
Monday, June 5, 2023

A high-throughput platform for environment friendly exploration of practical polypeptide chemical area


  • Cole, J. P., Hanlon, A. M., Rodriguez, Okay. J. & Berda, E. B. Protein-like construction and exercise in artificial polymers. J. Polym. Sci. A Polym. Chem. 55, 191–206 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Rothfuss, H., Knofel, N. D., Roesky, P. W. & Barner-Kowollik, C. Single-chain nanoparticles as catalytic nanoreactors. J. Am. Chem. Soc. 140, 5875–5881 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bonduelle, C. Secondary buildings of artificial polypeptide polymers. Polym. Chem. 9, 1517–1529 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Varanko, A. Okay., Su, J. C. & Chilkoti, A. Elastin-like polypeptides for biomedical functions. Annu. Rev. Biomed. Eng. 22, 343–369 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Callmann, C. E., Thompson, M. P. & Gianneschi, N. C. Poly(peptide): synthesis, construction, and performance of peptide–polymer amphiphiles and protein-like polymers. Acc. Chem. Res. 53, 400–413 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiang, T. et al. Single-chain heteropolymers transport protons selectively and quickly. Nature 577, 216–220 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Panganiban, B. et al. Random heteropolymers protect protein perform in international environments. Science 359, 1239–1243 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hilburg, S. L., Ruan, Z. Y., Xu, T. & Alexander-Katz, A. Habits of protein-inspired artificial random heteropolymers. Macromolecules 53, 9187–9199 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Han, Z., Hilburg, S. L. & Alexander-Katz, A. Pressured unfolding of protein-inspired single-chain random heteropolymers. Macromolecules 55, 1295–1309 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Music, Z. Y., Tan, Z. Z. & Cheng, J. J. Current advances and future views of artificial polypeptides from N-carboxyanhydrides. Macromolecules 52, 8521–8539 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Music, Z. Y. et al. Artificial polypeptides: from polymer design to supramolecular meeting and biomedical utility. Chem. Soc. Rev. 46, 6570–6599 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, X. F. & Li, Z. B. Advances and biomedical functions of polypeptide hydrogels derived from α-amino acid N-carboxyanhydride (NCA) polymerizations. Adv. Healthcare Mater. 7, e1800020 (2018).

    Article 

    Google Scholar
     

  • Deng, C. et al. Purposeful polypeptide and hybrid supplies: precision synthesis by way of α-amino acid N-carboxyanhydride polymerization and rising biomedical functions. Prog. Polym. Sci. 39, 330–364 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hou, Y. Q. & Lu, H. Protein PEPylation: a brand new paradigm of protein–polymer conjugation. Bioconjugate Chem. 30, 1604–1616 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Deming, T. J. Artificial polypeptides for biomedical functions. Prog. Polym. Sci. 32, 858–875 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y., Li, D., Ding, J. X. & Chen, X. S. Managed synthesis of polypeptides. Chin. Chem. Lett. 31, 3001–3014 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ruggieri, M., Avolio, C., Livrea, P. & Trojano, M. Glatiramer acetate in a number of sclerosis: a evaluate. CNS Drug Rev. 13, 178–191 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, S. V., Walter, Okay. U., Kast, P. & Hilvert, D. Looking sequence area for protein catalysts. Proc. Natl Acad. Sci. USA 98, 10596–10601 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reis, M. et al. Machine-learning-guided discovery of F-19 MRI brokers enabled by automated copolymer synthesis. J. Am. Chem. Soc. 143, 17677–17689 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Macarron, R. et al. Affect of high-throughput screening in biomedical analysis. Nat. Rev. Drug Discov. 10, 188–195 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Coley, C. W., Eyke, N. S. & Jensen, Okay. F. Autonomous discovery within the chemical sciences half I: progress. Angew. Chem. Int. Ed. 59, 22858–22893 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, L. L. et al. Excessive-throughput strategies within the discovery and research of biomaterials and materiobiology. Chem. Rev. 121, 4561–4677 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Soheilmoghaddam, F., Rumble, M. & Cooper-White, J. Excessive-throughput routes to biomaterials discovery. Chem. Rev. 121, 10792–10864 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeBenedictis, E. A. et al. Systematic molecular evolution permits sturdy biomolecule discovery. Nat. Strategies 19, 55–64 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gromski, P. S., Granda, J. M. & Cronin, L. Common chemical synthesis and discovery with ‘the Chemputer’. Developments Chem. 2, 4–12 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pollice, R. et al. Knowledge-driven methods for accelerated supplies design. Acc. Chem. Res. 54, 849–860 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Correa-Baena, J. P. et al. Accelerating supplies improvement by way of automation, machine studying, and high-performance computing. Joule 2, 1410–1420 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Okay. Okay., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Strategies 16, 687–694 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vamathevan, J. et al. Purposes of machine studying in drug discovery and improvement. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, R. et al. Environment friendly polymer-mediated supply of gene-editing ribonucleoprotein payloads by way of combinatorial design, parallelized experimentation, and machine studying. ACS Nano. 14, 17626–17639 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, R., Le, N., Oviedo, F., Brown, M. E. & Reineke, T. M. Combinatorial polycation synthesis and causal machine studying reveal divergent polymer design guidelines for efficient pDNA and ribonucleoprotein supply. JACS Au 2, 428–442 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldberg, M., Mahon, Okay. & Anderson, D. Combinatorial and rational approaches to polymer synthesis for drugs. Adv. Drug. Deliv. Rev. 60, 971–978 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baudis, S. & Behl, M. Excessive-throughput and combinatorial approaches for the event of multifunctional polymers. Macromol. Speedy Commun. 43, 2100400 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Holmes, P. F., Bohrer, M. & Kohn, J. Exploration of polymethacrylate construction–property correlations: advances in direction of combinatorial and high-throughput strategies for biomaterials discovery. Prog. Polym. Sci. 33, 787–796 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gormley, A. J. & Webb, M. A. Machine studying in combinatorial polymer chemistry. Nat. Rev. Mater. 6, 642–644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Upadhya, R. et al. Automation and data-driven design of polymer therapeutics. Adv. Drug. Deliv. Rev. 171, 1–28 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Patel, R. A., Borca, C. H. & Webb, M. A. Featurization methods for polymer sequence or composition design by machine studying. Mol. Syst. Des. Eng. 7, 661–676 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Oliver, S., Zhao, L., Gormley, A. J., Chapman, R. & Boyer, C. Dwelling within the quick lane excessive throughput managed/residing radical polymerization. Macromolecules 52, 3–23 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lynn, D. M., Anderson, D. G., Putnam, D. & Langer, R. Accelerated discovery of artificial transfection vectors: parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 123, 8155–8156 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Inexperienced, J. J., Langer, R. & Anderson, D. G. A combinatorial polymer library strategy yields perception into nonviral gene supply. Acc. Chem. Res. 41, 749–759 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gormley, A. J. et al. An oxygen-tolerant PET–RAFT polymerization for screening construction–exercise relationships. Angew. Chem. Int. Ed. 57, 1557–1562 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Judzewitsch, P. R. et al. Excessive-throughput course of for the invention of antimicrobial polymers and their upscaled manufacturing by way of move polymerization. Macromolecules 53, 631–639 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kosuri, S. et al. Machine-assisted discovery of chondroitinase ABC complexes towards sustained neural regeneration. Adv. Healthcare Mater. 11, 2102101 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tamasi, M. J. et al. Machine studying on a robotic platform for the design of polymer–protein hybrids. Adv. Mater. 34, 2201809 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gauthier, M. A., Gibson, M. I. & Klok, H. A. Synthesis of practical polymers by post-polymerization modification. Angew. Chem. Int. Ed. 48, 48–58 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gunay, Okay. A., Theato, P. & Klok, H. A. Standing on the shoulders of Hermann Staudinger: post-polymerization modification from previous to current. J. Polym. Sci. A Polym. Chem. 51, 1–28 (2013).

    Article 

    Google Scholar
     

  • Zhong, Y. B., Zeberl, B. J., Wang, X. & Luo, J. T. Combinatorial approaches in post-polymerization modification for rational improvement of therapeutic supply methods. Acta Biomater. 73, 21–37 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ladmiral, V. et al. Synthesis of neoglycopolymers by a mixture of “click on chemistry” and residing radical polymerization. J. Am. Chem. Soc. 128, 4823–4830 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wong, S. Y., Sood, N. & Putnam, D. Combinatorial analysis of cations, pH-sensitive and hydrophobic moieties for polymeric vector design. Mol. Ther. 17, 480–490 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pedone, E., Li, X. W., Koseva, N., Alpar, O. & Brocchini, S. An info wealthy biomedical polymer library. J. Mater. Chem. 13, 2825–2837 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Yan, Y. F. et al. Purposeful polyesters allow selective siRNA supply to lung most cancers over matched regular cells. Proc. Natl. Acad. Sci. USA 113, E5702–E5710 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wyrsta, M. D., Cogen, A. L. & Deming, T. J. A parallel artificial strategy for the evaluation of membrane interactive copolypeptides. J. Am. Chem. Soc. 123, 12919–12920 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deming, T. J. Synthesis of side-chain modified polypeptides. Chem. Rev. 116, 786–808 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Deming, T. J. Purposeful modification of thioether teams in peptides, polypeptides, and proteins. Bioconjugate Chem. 28, 691–700 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lu, H. et al. Ring-opening polymerization of γ-(4-vinylbenzyl)-l-glutamate N-carboxyanhydride for the synthesis of practical polypeptides. Macromolecules 44, 6237–6240 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhou, J. R. et al. A easy and versatile artificial technique to practical polypeptides by way of vinyl sulfone-substituted l-cysteine N-carboxyanhydride. Macromolecules 46, 6723–6730 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Engler, A. C., Lee, H. I. & Hammond, P. T. Extremely environment friendly “grafting onto” a polypeptide spine utilizing click on chemistry. Angew. Chem. Int. Ed. 48, 9334–9338 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Krannig, Okay. S. & Schlaad, H. pH-responsive bioactive glycopolypeptides with enhanced helicity and solubility in aqueous resolution. J. Am. Chem. Soc. 134, 18542–18545 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, J. B. et al. Non-ionic water-soluble “clickable” α-helical polypeptides: synthesis, characterization and aspect chain modification. Polym. Chem. 6, 1226–1229 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Y., Lopez-Silva, T. L. & Schneider, J. P. Hydrophilic azide-containing amino acid to reinforce the solubility of peptides for SPAAC reactions. Org. Lett. 24, 7378–7382 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pickens, C. J., Johnson, S. N., Pressnall, M. M., Leon, M. A. & Berkland, C. J. Sensible concerns, challenges, and limitations of bioconjugation by way of azide–alkyne cycloaddition. Bioconjugate Chem. 29, 686–701 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J., Chen, Q. Q. & Rozovsky, S. Using selenocysteine for expressed protein ligation and bioconjugations. J. Am. Chem. Soc. 139, 3430–3437 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Z. G., Shimon, D. & Metanis, N. Chemoselective copper-mediated modification of selenocysteines in peptides and proteins. J. Am. Chem. Soc. 143, 12817–12824 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Quaderer, R., Stitching, A. & Hilvert, D. Selenocysteine-mediated native chemical ligation. Helv. Chim. Acta 84, 1197–1206 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Steady and potent selenomab–drug conjugates. Cell Chem. Biol. 24, 433–442 e436 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. L. et al. Website-specific twin antibody conjugation by way of engineered cysteine and selenocysteine residues. Bioconjugate Chem. 26, 2243–2248 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Sayers, J. et al. Development of difficult proline–proline junctions by way of diselenide–selenoester ligation chemistry. J. Am. Chem. Soc. 140, 13327–13334 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flemer, S. Jr. Selenol defending teams in natural chemistry: particular emphasis on selenocysteine Se-protection in stable section peptide synthesis. Molecules. 16, 3232–3251 (2011).

  • Sharpless, Okay. B., Lauer, R. F. & Teranishi, A. Y. Electrophilic and nucleophilic organoselenium reagents. New routes to α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 95, 6137–6139 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Wu, J. A. et al. The functionalization of poly(ε-caprolactone) as a flexible platform utilizing ε-(α-phenylseleno) caprolactone as a monomer. Polym. Chem. 10, 3851–3858 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yu, L., Zhang, M., Du, F. S. & Li, Z. C. ROS-responsive poly(ε-caprolactone) with pendent thioether and selenide motifs. Polym. Chem. 9, 3762–3773 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L. et al. ROS-triggered degradation of selenide-containing polymers based mostly on selenoxide elimination. Polym. Chem. 10, 2039–2046 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Reich, H. J., Wollowitz, S., Development, J. E., Chow, F. & Wendelborn, D. F. Syn elimination of alkyl selenoxides. Aspect reactions involving selenenic acids. Structural and solvent results on charges. J. Org. Chem. 43, 1697–1705 (1978).

    Article 
    CAS 

    Google Scholar
     

  • Yang, Y. et al. Genetically encoded releasable photo-cross-linking methods for learning protein–protein interactions in residing cells. Nat. Protoc. 12, 2147–2168 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, Y. et al. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label. Nat. Commun. 7, 12299 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lin, S. et al. Genetically encoded cleavable protein photo-cross-linker. J. Am. Chem. Soc. 136, 11860–11863 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian, Z. Y., Zhang, Z. C., Wang, S. & Lu, H. A moisture-tolerant path to unprotected α/β-amino acid N-carboxyanhydrides and facile synthesis of hyperbranched polypeptides. Nat. Commun. 12, 5810 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, G. et al. Synthesis of water soluble and multi-responsive selenopolypeptides by way of ring-opening polymerization of N-carboxyanhydrides. Chem. Commun. 55, 7860–7863 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Y. Y. A. et al. Speedy cross-metathesis for reversible protein modifications by way of chemical entry to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc. 135, 12156–12159 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Reddy, Okay. M. & Mugesh, G. Utility of dehydroalanine as a constructing block for the synthesis of selenocysteine-containing peptides. RSC Adv. 9, 34–43 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ahn, G. et al. LYTACs that interact the asialoglycoprotein receptor for focused protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Delaveris, C. S., Chiu, S. H., Riley, N. M. & Bertozzi, C. R. Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc. Natl Acad. Sci. USA 118, e2012408118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Du, J. J. et al. Glycopeptide ligation by way of direct aminolysis of selenoester. Chin. Chem. Lett. 29, 1127–1130 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Temperini, A., Piazzolla, F., Minuti, L., Curini, M. & Siciliano, C. Normal, gentle, and metal-free synthesis of phenyl selenoesters from anhydrides and their use in peptide synthesis. J. Org. Chem. 82, 4588–4603 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, L. H. et al. Polymer informatics: present standing and significant subsequent steps. Mater. Sci. Eng. R Rep. 144, 100595 (2021).

    Article 

    Google Scholar
     

  • Upadhya, R., Kanagala, M. J. & Gormley, A. J. Purifying low-volume combinatorial polymer libraries with gel filtration columns. Macromol. Speedy Commun. 40, 1900528 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Barbosa, N. V. et al. Organoselenium compounds as mimics of selenoproteins and thiol modifier brokers. Metallomics 9, 1703–1734 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huang, X., Liu, X. M., Luo, Q. A., Liu, J. Q. & Shen, J. C. Synthetic selenoenzymes: designed and redesigned. Chem. Soc. Rev. 40, 1171–1184 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Seibt, T. M., Proneth, B. & Conrad, M. Position of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 133, 144–152 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yant, L. J. et al. The selenoprotein GPX4 is important for mouse improvement and protects from radiation and oxidative harm insults. Free Radic. Biol. Med. 34, 496–502 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C. X. et al. The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to maintain Treg cell activation and suppression of antitumor immunity.Cell Rep. 35, 109235 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Parnham, M. & Sies, H. Ebselen: potential remedy for cerebral ischaemia. Professional Opin. Investig. Medicine 9, 607–619 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landgraf, A. D. et al. Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chem. Neurosci. 11, 3008–3016 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yamagata, Okay., Ichinose, S., Miyashita, A. & Tagami, M. Protecting results of ebselen, a seleno-organic antioxidant on neurodegeneration induced by hypoxia and reperfusion in stroke-prone spontaneously hypertensive rat. Neuroscience. 153, 428–435 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paglia, D. E. & Valentine, W. N. Research on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70, 158–169 (1967).

    CAS 
    PubMed 

    Google Scholar
     

  • Shahriari, B., Swersky, Okay., Wang, Z. Y., Adams, R. P. & de Freitas, N. Taking the human out of the loop: a evaluate of Bayesian optimization. Proc. IEEE 104, 148–175 (2016).

    Article 

    Google Scholar
     

  • Shields, B. J. et al. Bayesian response optimization as a instrument for chemical synthesis. Nature 590, 89–96 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nambiar, A. M. Okay. et al. Bayesian optimization of computer-proposed multistep artificial routes on an automatic robotic move platform. ACS Cent. Sci. 8, 825–836 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hase, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Balandat, M. et al. BoTorch: a framework for environment friendly Monte-Carlo Bayesian optimization. Adv. Neural Inf. Course of. Syst. 33, 21524–21538 (2020).


    Google Scholar
     

  • Shao, L. X., Li, Y. M., Lu, J. M. & Jiang, X. F. Current progress in selenium-catalyzed natural reactions. Org. Chem. Entrance. 6, 2999–3041 (2019).

    Article 

    Google Scholar
     

  • Reich, H. J. & Hondal, R. J. Why nature selected selenium. ACS Chem. Biol. 11, 821–841 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xia, J. H., Li, T. Y., Lu, C. J. & Xu, H. P. Selenium-containing polymers: views towards various functions in each adaptive and biomedical supplies. Macromolecules 51, 7435–7455 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. L. et al. Organoselenium chemistry-based polymer synthesis. Org. Chem. Entrance. 7, 2815–2841 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles