google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
21.1 C
New York
Wednesday, June 7, 2023

Aggregates of conjugated polymers: bottom-up management of mesoscopic morphology and photophysics


  • Coakley, Okay. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Pal, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based natural photo voltaic cells. Chem. Rev. 107, 1324–1338 (2007).

    Article 

    Google Scholar
     

  • Facchetti, A. π-Conjugated polymers for natural electronics and photovoltaic cell purposes. Chem. Mater. 23, 733–758 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lu, L. & Yu, L. Understanding low bandgap polymer PTB7 and optimizing polymer photo voltaic cells primarily based on it. Adv. Mater. 26, 4413–4430 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, H. et al. All-solution processed polymer light-emitting diode shows. Nat. Commun. 4, 1971 (2013).

    Article 

    Google Scholar
     

  • McQuade, D. T., Pullen, A. E. & Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Perception into high-performance conjugated polymers for natural field-effect transistors. Chem. 4, 2748–2785 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Scheblykin, I. G., Yartsev, A., Pullerits, T., Gulbinas, V. & Sundström, V. Excited state and cost photogeneration dynamics in conjugated polymers. J. Phys. Chem. B 111, 6303–6321 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Barbara, P. F., Gesquiere, A. J., Park, S.-J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The position of chemical design within the efficiency of natural semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhao, F., Wang, C. & Zhan, X. Morphology management in natural photo voltaic cells. Adv. Power Mater. 8, 1703147 (2018).

    Article 

    Google Scholar
     

  • Kaake, L. G., Barbara, P. F. & Zhu, X. Y. Intrinsic cost trapping in natural and polymeric semiconductors: a bodily chemistry perspective. J. Phys. Chem. Lett. 1, 628–635 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Y. & Yu, L. A brand new class of semiconducting polymers for bulk heterojunction photo voltaic cells with exceptionally excessive efficiency. Acc. Chem. Res. 43, 1227–1236 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Meredith, P., Bettinger, C. J., Irimia-Vladu, M., Mostert, A. B. & Schwenn, P. E. Digital and optoelectronic supplies and gadgets impressed by nature. Rep. Prog. Phys. 76, 034501 (2013).

    Article 
    CAS 

    Google Scholar
     

  • van Franeker, J. J. et al. Polymer photo voltaic cells: Solubility controls fiber community formation. J. Am. Chem. Soc. 137, 11783–11794 (2015).

    Article 

    Google Scholar
     

  • Wang, D. et al. New insights into morphology of excessive efficiency BHJ photovoltaics revealed by excessive decision AFM. Nano Lett. 14, 5727–5732 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Li, W. et al. Impact of the fibrillar microstructure on the effectivity of excessive molecular weight diketopyrrolopyrrole-based polymer photo voltaic cells. Adv. Mater. 26, 1565–1570 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Levin, A. et al. Ostwald’s rule of levels governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Noriega, R. et al. A basic relationship between dysfunction, aggregation and cost transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hedley, G. J. et al. Figuring out the optimum morphology in high-performance polymer-fullerene natural photovoltaic cells. Nat. Commun. 4, 2867 (2013).

    Article 

    Google Scholar
     

  • Ostrowski, D. P. et al. The results of aggregation on digital and optical properties of oligothiophene particles. ACS Nano 6, 5507–5513 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Jung, J. W., Liu, F., Russell, T. P. & Jo, W. H. A excessive mobility conjugated polymer primarily based on dithienothiophene and diketopyrrolopyrrole for natural photovoltaics. Power Environ. Sci. 5, 6857–6861 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Österbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional digital excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).

    Article 

    Google Scholar
     

  • Sahoo, D., Tian, Y., Sforazzini, G., Anderson, H. L. & Scheblykin, I. G. Picture-induced fluorescence quenching in conjugated polymers dispersed in stable matrices at low focus. J. Mater. Chem. C 2, 6601–6608 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hou, L., Adhikari, S., Tian, Y., Scheblykin, I. G. & Orrit, M. Absorption and quantum yield of single conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) molecules. Nano Lett. 17, 1575–1581 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hestand, N. J. & Spano, F. C. Molecular combination photophysics past the Kasha mannequin: novel design rules for natural supplies. Acc. Chem. Res. 50, 341–350 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, S. et al. Affect of covalent and noncovalent spine rigidification methods on the aggregation constructions of a wide-band-gap polymer for photovoltaic cells. Chem. Mater. 32, 1993–2003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T.-Q., Kwong, R. C., Thompson, M. E. & Schwartz, B. J. Bettering the efficiency of conjugated polymer-based gadgets by management of interchain interactions and polymer movie morphology. Appl. Phys. Lett. 76, 2454–2456 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T.-Q., Martini, I. B., Liu, J. & Schwartz, B. J. Controlling interchain interactions in conjugated polymers: the results of chain morphology on exciton–exciton annihilation and aggregation in MEH−PPV movies. J. Phys. Chem. B 104, 237–255 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Schwartz, B. J. Conjugated polymers as molecular supplies: how chain conformation and movie morphology affect vitality switch and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Z., Shao, B., Geberth, G. T. & Vanden Bout, D. A. Results of molecular structure on morphology and photophysics in conjugated polymers: from single molecules to bulk. Chem. Sci. 9, 1101–1111 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H. et al. Construction and morphology management in skinny movies of conjugated polymers for an improved cost transport. Polymers 5, 1272–1324 (2013).

    Article 

    Google Scholar
     

  • Thiessen, A. et al. Unraveling the chromophoric dysfunction of poly(3-hexylthiophene). Proc. Natl Acad. Sci. USA 110, E3550–E3556 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Riera-Galindo, S., Tamayo, A. & Mas-Torrent, M. Position of polymorphism and thin-film morphology in natural semiconductors processed by answer shearing. ACS Omega 3, 2329–2339 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Gao, X. et al. Morphology and transport characterization of solution-processed rubrene skinny movies on polymer-modified substrates. Sci. Rep. 10, 12183 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Stangl, T. et al. Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proc. Natl Acad. Sci. USA 112, E5560–E5566 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Unidirectional and crystalline natural semiconductor microwire arrays by solvent vapor annealing with PMMA because the aiding layer. J. Mater. Chem. C 6, 12479–12483 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Marques, S. R.-M., Selhorst, R. C., Venkataraman, D. & Barnes, M. D. Probing the evolution of molecular packing underlying HJ-aggregate transition in natural semiconductors utilizing solvent vapor annealing. J. Phys. Chem. C 123, 28948–28957 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Schulz, G. L. & Ludwigs, S. Managed crystallization of conjugated polymer movies from answer and solvent vapor for polymer electronics. Adv. Funct. Mater. 27, 1603083 (2017).

    Article 

    Google Scholar
     

  • Chen, H., Hsiao, Y.-C., Hu, B. & Dadmun, M. Tuning the morphology and efficiency of low bandgap polymer: fullerene heterojunctions by way of solvent annealing in selective solvents. Adv. Funct. Mater. 24, 5129–5136 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Jo, G., Jung, J. & Chang, M. Managed self-assembly of conjugated polymers by way of a solvent vapor pre-treatment to be used in natural field-effect transistors. Polymers 11, 332 (2019).

    Article 

    Google Scholar
     

  • Shi, J. et al. Picture-oxidation reveals H-aggregates hidden in spin-cast-conjugated polymer movies as noticed by two-dimensional polarization imaging. Chem. Mater. 31, 8927–8936 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Trefz, D. et al. Tuning orientational order of extremely aggregating p(NDI2OD-T2) by solvent vapor annealing and blade coating. Macromolecules 52, 43–54 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Vogelsang, J., Adachi, T., Brazard, J., Vanden Bout, D. A. & Barbara, P. F. Self-assembly of extremely ordered conjugated polymer aggregates with long-range vitality switch. Nat. Mater. 10, 942–946 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lindvig, T., Michelsen, M. L. & Kontogeorgis, G. M. A Flory–Huggins mannequin primarily based on the Hansen solubility parameters. Fluid Part Equilib. 203, 247–260 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Hoang, D. T. et al. In situ multi-modal monitoring of solvent vapor swelling in polymer skinny movies. Rev. Sci. Instrum. 87, 015106 (2016).

    Article 

    Google Scholar
     

  • Voorhees, P. W. The speculation of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).

    Article 

    Google Scholar
     

  • Baldan, A. Assessment progress in Ostwald ripening theories and their purposes to nickel-base superalloys. Half I: Ostwald ripening theories. J. Mater. Sci. 37, 2171–2202 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Yao, J. H., Elder, Okay. R., Guo, H. & Grant, M. Concept and simulation of Ostwald ripening. Phys. Rev. B 47, 14110–14125 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Yec, C. C. & Zeng, H. C. Synthesis of complicated nanomaterials by way of Ostwald ripening. J. Mater. Chem. A 2, 4843–4851 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Vogelsang, J. & Lupton, J. M. Solvent vapor annealing of single conjugated polymer chains: constructing natural optoelectronic supplies from the underside up. J. Phys. Chem. Lett. 3, 1503–1513 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Park, H. & Kaufman, L. J. In situ optical imaging of the expansion of conjugated polymer aggregates. Angew. Chem. Int. Ed. 57, 1826–1830 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Martin, T. P. et al. Packing dependent digital coupling in single poly(3-hexylthiophene) H- and J-aggregate nanofibers. J. Phys. Chem. B 117, 4478–4487 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Deng, Y., Yuan, W., Jia, Z. & Liu, G. H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 118, 14536–14545 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Más-Montoya, M. & Janssen, R. A. J. The impact of H- and J-aggregation on the photophysical and photovoltaic properties of small thiophene–pyridine–DPP molecules for bulk-heterojunction photo voltaic cells. Adv. Funct. Mater. 27, 1605779 (2017).

    Article 

    Google Scholar
     

  • Eder, T. et al. Interaction between J- and H-type coupling in aggregates of π-conjugated polymers: a single-molecule perspective. Angew. Chem. Int. Ed. 58, 18898–18902 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Ziffer, M. E. et al. Tuning H- and J-aggregate conduct in π-conjugated polymers by way of noncovalent interactions. J. Phys. Chem. C 122, 18860–18869 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liess, A. et al. Exciton coupling of merocyanine dyes from H- to J-type within the stable state by crystal engineering. Nano Lett. 17, 1719–1726 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, L. et al. Tuning the π-π stacking distance and J-aggregation of DPP-based conjugated polymer by way of introducing insulating polymer. J. Polym. Sci. B Polym. Phys. 54, 838–847 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqui, S. & Spano, F. C. H- and J-aggregates of conjugated polymers and oligomers: a theoretical investigation. Chem. Phys. Lett. 308, 99–105 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Niles, E. T. et al. J-aggregate conduct in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 3, 259–263 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Spano, F. C. & Silva, C. H- and J-aggregate conduct in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Hestand, N. J. & Spano, F. C. Expanded concept of H- and J-molecular aggregates: the results of vibronic coupling and intermolecular cost switch. Chem. Rev. 118, 7069–7163 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Hestand, N. J. & Spano, F. C. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks. J. Chem. Phys. 143, 244707 (2015).

    Article 

    Google Scholar
     

  • Yamagata, H. & Spano, F. C. Sturdy photophysical similarities between conjugated polymers and J-aggregates. J. Phys. Chem. Lett. 5, 622–632 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Yamagata, H. et al. The red-phase of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV): a disordered HJ-aggregate. J. Chem. Phys. 139, 114903 (2013).

    Article 

    Google Scholar
     

  • Eder, T. et al. Switching between H- and J-type digital coupling in single conjugated polymer aggregates. Nat. Commun. 8, 1641 (2017).

    Article 

    Google Scholar
     

  • Hu, D. et al. Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405, 1030–1033 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T.-Q., Doan, V. & Schwartz, B. J. Conjugated polymer aggregates in answer: management of interchain interactions. J. Chem. Phys. 110, 4068–4078 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Traiphol, R. et al. Results of chain conformation and chain size on diploma of aggregation in assembled particles of conjugated polymer in solvents–nonsolvent: a spectroscopic examine. J. Polym. Sci. B Polym. Phys. 48, 894–904 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Li, T. et al. Impact of solvent on the answer state of conjugated polymer P7DPF together with single-chain to aggregated state construction formation, dynamic evolution, and associated mechanisms. Macromolecules 53, 4264–4273 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, H. et al. Impact of solvents on the answer state and movie condensed state constructions of a polyfluorene conjugated polymer within the dynamic evolution course of from answer to movie. J. Phys. Chem. C 123, 27317–27326 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xu, Z., Tsai, H., Wang, H.-L. & Cotlet, M. Solvent polarity impact on chain conformation, movie morphology, and optical properties of a water-soluble conjugated polymer. J. Phys. Chem. B 114, 11746–11752 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kwon, Y. & Kaufman, L. J. Almost isotropic conjugated polymer aggregates with environment friendly native exciton diffusion. J. Phys. Chem. C 123, 29418–29426 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J., Park, H. & Kaufman, L. J. Extremely anisotropic conjugated polymer aggregates: preparation and quantification of bodily and optical anisotropy. J. Phys. Chem. C 121, 13854–13862 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jackson, N. E. et al. Conformational order in aggregates of conjugated polymers. J. Am. Chem. Soc. 137, 6254–6262 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Blatchford, J. W. et al. Photoluminescence in pyridine-based polymers: position of aggregates. Phys. Rev. B 54, 9180–9189 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Peteanu, L. A. et al. Visualizing core–shell construction in substituted PPV oligomer aggregates utilizing fluorescence lifetime imaging microscopy (FLIM). J. Phys. Chem. C 115, 15607–15616 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Peteanu, L. A., Chowdhury, S., Wildeman, J. & Sfeir, M. Y. Exciton–exciton annihilation as a probe of interchain interactions in PPV–oligomer aggregates. J. Phys. Chem. B 121, 1707–1714 (2017).

    Article 
    CAS 

    Google Scholar
     

  • O’Carroll, D. M. et al. Conjugated polymer-based photonic nanostructures. Polym. Chem. 4, 5181–5196 (2013).

    Article 

    Google Scholar
     

  • Traub, M. C. et al. Unmasking bulk exciton traps and interchain digital interactions with single conjugated polymer aggregates. ACS Nano 6, 523–529 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Z. et al. Impression of spine fluorination on nanoscale morphology and excitonic coupling in polythiophenes. Proc. Natl Acad. Sci. USA 114, 5113–5118 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Raithel, D. et al. Direct statement of spine planarization by way of side-chain alignment in single bulky-substituted polythiophenes. Proc. Natl Acad. Sci. USA 115, 2699–2704 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Carbonnier, B., Egbe, D. A. M., Birckner, E., Grummt, U.-W. & Pakula, T. Correlation between chain packing and photoluminescence for PPV/PPE in macroscopically oriented state: facet chain results. Macromolecules 38, 7546–7554 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Wedler, S. et al. What’s the position of planarity and torsional freedom for aggregation in a π-conjugated donor–acceptor mannequin oligomer? J. Mater. Chem. C 8, 4944–4955 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Fei, Z. et al. Affect of spine fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 137, 6866–6879 (2015).

    Article 
    CAS 

    Google Scholar
     

  • He, G. et al. A brand new technique for designing conjugated polymer-based fluorescence sensing movies by way of introduction of conformation controllable facet chains. Macromolecules 44, 703–710 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Sahoo, D., Sugiyasu, Okay., Tian, Y., Takeuchi, M. & Scheblykin, I. G. Impact of conjugated spine safety on intrinsic and light-induced fluorescence quenching in polythiophenes. Chem. Mater. 26, 4867–4875 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Clark, J., Silva, C., Pal, R. H. & Spano, F. C. Position of intermolecular coupling within the photophysics of disordered natural semiconductors: combination emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).

    Article 

    Google Scholar
     

  • Chen, M. S. et al. Management of polymer-packing rrientation in skinny movies by way of artificial tailoring of spine coplanarity. Chem. Mater. 25, 4088–4096 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Hu, Z. et al. Excitonic vitality migration in conjugated polymers: The vital position of interchain morphology. J. Am. Chem. Soc. 136, 16023–16031 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Huser, T., Yan, M. & Rothberg, L. J. Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc. Natl Acad. Sci. USA 97, 11187–11191 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Steiner, F., Vogelsang, J. & Lupton, J. M. Singlet-triplet annihilation limits exciton yield in poly(3-Hexylthiophene). Phys. Rev. Lett. 112, 137402 (2014).

    Article 

    Google Scholar
     

  • Park, H., Hoang, D. T., Paeng, Okay., Yang, J. & Kaufman, L. J. Conformation-dependent photostability amongst and inside single conjugated polymers. Nano Lett. 15, 7604–7609 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Brown, P. J. et al. Impact of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67, 064203 (2003).

    Article 

    Google Scholar
     

  • Lin, H. et al. Fluorescence blinking, exciton dynamics, and vitality switch domains in single conjugated polymer chains. J. Am. Chem. Soc. 130, 7042–7051 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Habuchi, S., Onda, S. & Vacha, M. Molecular weight dependence of emission depth and emitting websites distribution inside single conjugated polymer molecules. Phys. Chem. Chem. Phys. 13, 1743–1753 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Adachi, T. et al. Conformational impact on vitality switch in single polythiophene chains. J. Phys. Chem. B 116, 9866–9872 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Traub, M. C., Lakhwani, G., Bolinger, J. C., Bout, D. V. & Barbara, P. F. Digital vitality switch in extremely aligned MEH-PPV single chains. J. Phys. Chem. B 115, 9941–9947 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Park, H., Kwon, Y. & Kaufman, L. J. Advanced photophysical behaviors have an effect on single conjugated molecule optical anisotropy measurements. J. Phys. Chem. C 123, 1960–1965 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lupton, J. M. Chromophores in conjugated polymers—all straight? ChemPhysChem 13, 901–907 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Li, Y.-C. et al. Scattering examine of the conformational construction and aggregation conduct of a conjugated polymer answer. Langmuir 25, 4668–4677 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Pullerits, T., Mirzov, O. & Scheblykin, I. G. Conformational fluctuations and enormous fluorescence spectral diffusion in conjugated polymer single chains at low temperatures. J. Phys. Chem. B 109, 19099–19107 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Lin, H. et al. Destiny of excitations in conjugated polymers: single-molecule spectroscopy reveals nonemissive “darkish” areas in MEH-PPV particular person chains. Nano Lett. 9, 4456–4461 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Steiner, F., Lupton, J. M. & Vogelsang, J. Position of triplet-state shelving in natural photovoltaics: single-chain aggregates of poly(3-hexylthiophene) versus mesoscopic multichain aggregates. J. Am. Chem. Soc. 139, 9787–9790 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grewer, C. & Brauer, H.-D. Mechanism of the triplet-state quenching by molecular oxygen in answer. J. Phys. Chem. 98, 4230–4235 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, A. Okay., Garcia, J. A., Ulibarri-Sanchez, J., Gao, J. & Gray, J. Okay. Excessive intrachain order promotes triplet formation from recombination of long-lived polarons in poly(3-hexylthiophene) J-aggregate nanofibers. ACS Nano 8, 10559–10568 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wilhelm, P., Clean, D., Lupton, J. M. & Vogelsang, J. Management of intrachain morphology within the formation of polyfluorene aggregates on the single-molecule stage. ChemPhysChem 21, 961–965 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chunwaschirasiri, W., Tanto, B., Huber, D. L. & Winokur, M. J. Chain conformations and photoluminescence of poly(di-n-octylfluorene). Phys. Rev. Lett. 94, 107402 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Grell, M. et al. Chain geometry, answer aggregation and enhanced dichroism within the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 49, 439–444 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Tsoi, W. C. & Lidzey, D. G. Raman spectroscopy of fluorene oligomers within the α-, β- and γ-phases. J. Phys. Condens. Matter 20, 125213 (2008).

    Article 

    Google Scholar
     

  • Vogelsang, J., Brazard, J., Adachi, T., Bolinger, J. C. & Barbara, P. F. Watching the annealing course of one polymer chain at a time. Angew. Chem. Int. Ed. 50, 2257–2261 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Y. & Lakowicz, J. R. A better have a look at polymer annealing. Nature 472, 178–179 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Clever, A. J. & Gray, J. Okay. Understanding the structural evolution of single conjugated polymer chain conformers. Polymers 8, 388 (2016).

    Article 

    Google Scholar
     

  • Wang, H. et al. In situ statement of natural single micro-crystal fabrication by solvent vapor annealing. J. Mater. Chem. C 9, 9124–9129 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bolinger, J. C. et al. Conformation and vitality switch in single conjugated polymers. Acc. Chem. Res. 45, 1992–2001 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Feist, F. A. & Basché, T. The folding of particular person conjugated polymer chains throughout annealing. Angew. Chem. Int. Ed. 50, 5256–5257 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Lee, S. H. et al. Investigation and management of single molecular constructions of meso–meso linked lengthy porphyrin arrays. J. Phys. Chem. B 122, 5121–5125 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Würsch, D. et al. Molecular water lilies: Orienting single molecules in a polymer movie by solvent vapor annealing. J. Phys. Chem. Lett. 7, 4451–4457 (2016).

    Article 

    Google Scholar
     

  • Tenopala-Carmona, F., Fronk, S., Bazan, G. C., Samuel, I. D. W. & Penedo, J. C. Actual-time statement of conformational switching in single conjugated polymer chains. Sci. Adv. 4, eaao5786 (2018).

    Article 

    Google Scholar
     

  • Joung, H. et al. Impression of chain conformation on structural heterogeneity in polymer community. Nano Lett. 22, 5487–5494 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles