Coakley, Okay. M. & McGehee, M. D. Conjugated polymer photovoltaic cells. Chem. Mater. 16, 4533–4542 (2004).
Pal, R. H. et al. Electroluminescence in conjugated polymers. Nature 397, 121–128 (1999).
Günes, S., Neugebauer, H. & Sariciftci, N. S. Conjugated polymer-based natural photo voltaic cells. Chem. Rev. 107, 1324–1338 (2007).
Facchetti, A. π-Conjugated polymers for natural electronics and photovoltaic cell purposes. Chem. Mater. 23, 733–758 (2011).
Lu, L. & Yu, L. Understanding low bandgap polymer PTB7 and optimizing polymer photo voltaic cells primarily based on it. Adv. Mater. 26, 4413–4430 (2014).
Zheng, H. et al. All-solution processed polymer light-emitting diode shows. Nat. Commun. 4, 1971 (2013).
McQuade, D. T., Pullen, A. E. & Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev. 100, 2537–2574 (2000).
Yang, J., Zhao, Z., Wang, S., Guo, Y. & Liu, Y. Perception into high-performance conjugated polymers for natural field-effect transistors. Chem. 4, 2748–2785 (2018).
Scheblykin, I. G., Yartsev, A., Pullerits, T., Gulbinas, V. & Sundström, V. Excited state and cost photogeneration dynamics in conjugated polymers. J. Phys. Chem. B 111, 6303–6321 (2007).
Barbara, P. F., Gesquiere, A. J., Park, S.-J. & Lee, Y. J. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38, 602–610 (2005).
Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The position of chemical design within the efficiency of natural semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).
Zhao, F., Wang, C. & Zhan, X. Morphology management in natural photo voltaic cells. Adv. Power Mater. 8, 1703147 (2018).
Kaake, L. G., Barbara, P. F. & Zhu, X. Y. Intrinsic cost trapping in natural and polymeric semiconductors: a bodily chemistry perspective. J. Phys. Chem. Lett. 1, 628–635 (2010).
Liang, Y. & Yu, L. A brand new class of semiconducting polymers for bulk heterojunction photo voltaic cells with exceptionally excessive efficiency. Acc. Chem. Res. 43, 1227–1236 (2010).
Meredith, P., Bettinger, C. J., Irimia-Vladu, M., Mostert, A. B. & Schwenn, P. E. Digital and optoelectronic supplies and gadgets impressed by nature. Rep. Prog. Phys. 76, 034501 (2013).
van Franeker, J. J. et al. Polymer photo voltaic cells: Solubility controls fiber community formation. J. Am. Chem. Soc. 137, 11783–11794 (2015).
Wang, D. et al. New insights into morphology of excessive efficiency BHJ photovoltaics revealed by excessive decision AFM. Nano Lett. 14, 5727–5732 (2014).
Li, W. et al. Impact of the fibrillar microstructure on the effectivity of excessive molecular weight diketopyrrolopyrrole-based polymer photo voltaic cells. Adv. Mater. 26, 1565–1570 (2014).
Levin, A. et al. Ostwald’s rule of levels governs structural transitions and morphology of dipeptide supramolecular polymers. Nat. Commun. 5, 5219 (2014).
Noriega, R. et al. A basic relationship between dysfunction, aggregation and cost transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).
Hedley, G. J. et al. Figuring out the optimum morphology in high-performance polymer-fullerene natural photovoltaic cells. Nat. Commun. 4, 2867 (2013).
Ostrowski, D. P. et al. The results of aggregation on digital and optical properties of oligothiophene particles. ACS Nano 6, 5507–5513 (2012).
Jung, J. W., Liu, F., Russell, T. P. & Jo, W. H. A excessive mobility conjugated polymer primarily based on dithienothiophene and diketopyrrolopyrrole for natural photovoltaics. Power Environ. Sci. 5, 6857–6861 (2012).
Österbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional digital excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).
Sahoo, D., Tian, Y., Sforazzini, G., Anderson, H. L. & Scheblykin, I. G. Picture-induced fluorescence quenching in conjugated polymers dispersed in stable matrices at low focus. J. Mater. Chem. C 2, 6601–6608 (2014).
Hou, L., Adhikari, S., Tian, Y., Scheblykin, I. G. & Orrit, M. Absorption and quantum yield of single conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) molecules. Nano Lett. 17, 1575–1581 (2017).
Hestand, N. J. & Spano, F. C. Molecular combination photophysics past the Kasha mannequin: novel design rules for natural supplies. Acc. Chem. Res. 50, 341–350 (2017).
Li, S. et al. Affect of covalent and noncovalent spine rigidification methods on the aggregation constructions of a wide-band-gap polymer for photovoltaic cells. Chem. Mater. 32, 1993–2003 (2020).
Nguyen, T.-Q., Kwong, R. C., Thompson, M. E. & Schwartz, B. J. Bettering the efficiency of conjugated polymer-based gadgets by management of interchain interactions and polymer movie morphology. Appl. Phys. Lett. 76, 2454–2456 (2000).
Nguyen, T.-Q., Martini, I. B., Liu, J. & Schwartz, B. J. Controlling interchain interactions in conjugated polymers: the results of chain morphology on exciton–exciton annihilation and aggregation in MEH−PPV movies. J. Phys. Chem. B 104, 237–255 (2000).
Schwartz, B. J. Conjugated polymers as molecular supplies: how chain conformation and movie morphology affect vitality switch and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003).
Hu, Z., Shao, B., Geberth, G. T. & Vanden Bout, D. A. Results of molecular structure on morphology and photophysics in conjugated polymers: from single molecules to bulk. Chem. Sci. 9, 1101–1111 (2018).
Wang, H. et al. Construction and morphology management in skinny movies of conjugated polymers for an improved cost transport. Polymers 5, 1272–1324 (2013).
Thiessen, A. et al. Unraveling the chromophoric dysfunction of poly(3-hexylthiophene). Proc. Natl Acad. Sci. USA 110, E3550–E3556 (2013).
Riera-Galindo, S., Tamayo, A. & Mas-Torrent, M. Position of polymorphism and thin-film morphology in natural semiconductors processed by answer shearing. ACS Omega 3, 2329–2339 (2018).
Gao, X. et al. Morphology and transport characterization of solution-processed rubrene skinny movies on polymer-modified substrates. Sci. Rep. 10, 12183 (2020).
Stangl, T. et al. Mesoscopic quantum emitters from deterministic aggregates of conjugated polymers. Proc. Natl Acad. Sci. USA 112, E5560–E5566 (2015).
Zhu, X. et al. Unidirectional and crystalline natural semiconductor microwire arrays by solvent vapor annealing with PMMA because the aiding layer. J. Mater. Chem. C 6, 12479–12483 (2018).
Marques, S. R.-M., Selhorst, R. C., Venkataraman, D. & Barnes, M. D. Probing the evolution of molecular packing underlying HJ-aggregate transition in natural semiconductors utilizing solvent vapor annealing. J. Phys. Chem. C 123, 28948–28957 (2019).
Schulz, G. L. & Ludwigs, S. Managed crystallization of conjugated polymer movies from answer and solvent vapor for polymer electronics. Adv. Funct. Mater. 27, 1603083 (2017).
Chen, H., Hsiao, Y.-C., Hu, B. & Dadmun, M. Tuning the morphology and efficiency of low bandgap polymer: fullerene heterojunctions by way of solvent annealing in selective solvents. Adv. Funct. Mater. 24, 5129–5136 (2014).
Jo, G., Jung, J. & Chang, M. Managed self-assembly of conjugated polymers by way of a solvent vapor pre-treatment to be used in natural field-effect transistors. Polymers 11, 332 (2019).
Shi, J. et al. Picture-oxidation reveals H-aggregates hidden in spin-cast-conjugated polymer movies as noticed by two-dimensional polarization imaging. Chem. Mater. 31, 8927–8936 (2019).
Trefz, D. et al. Tuning orientational order of extremely aggregating p(NDI2OD-T2) by solvent vapor annealing and blade coating. Macromolecules 52, 43–54 (2019).
Vogelsang, J., Adachi, T., Brazard, J., Vanden Bout, D. A. & Barbara, P. F. Self-assembly of extremely ordered conjugated polymer aggregates with long-range vitality switch. Nat. Mater. 10, 942–946 (2011).
Lindvig, T., Michelsen, M. L. & Kontogeorgis, G. M. A Flory–Huggins mannequin primarily based on the Hansen solubility parameters. Fluid Part Equilib. 203, 247–260 (2002).
Hoang, D. T. et al. In situ multi-modal monitoring of solvent vapor swelling in polymer skinny movies. Rev. Sci. Instrum. 87, 015106 (2016).
Voorhees, P. W. The speculation of Ostwald ripening. J. Stat. Phys. 38, 231–252 (1985).
Baldan, A. Assessment progress in Ostwald ripening theories and their purposes to nickel-base superalloys. Half I: Ostwald ripening theories. J. Mater. Sci. 37, 2171–2202 (2002).
Yao, J. H., Elder, Okay. R., Guo, H. & Grant, M. Concept and simulation of Ostwald ripening. Phys. Rev. B 47, 14110–14125 (1993).
Yec, C. C. & Zeng, H. C. Synthesis of complicated nanomaterials by way of Ostwald ripening. J. Mater. Chem. A 2, 4843–4851 (2014).
Vogelsang, J. & Lupton, J. M. Solvent vapor annealing of single conjugated polymer chains: constructing natural optoelectronic supplies from the underside up. J. Phys. Chem. Lett. 3, 1503–1513 (2012).
Yang, J., Park, H. & Kaufman, L. J. In situ optical imaging of the expansion of conjugated polymer aggregates. Angew. Chem. Int. Ed. 57, 1826–1830 (2018).
Martin, T. P. et al. Packing dependent digital coupling in single poly(3-hexylthiophene) H- and J-aggregate nanofibers. J. Phys. Chem. B 117, 4478–4487 (2013).
Deng, Y., Yuan, W., Jia, Z. & Liu, G. H- and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 118, 14536–14545 (2014).
Más-Montoya, M. & Janssen, R. A. J. The impact of H- and J-aggregation on the photophysical and photovoltaic properties of small thiophene–pyridine–DPP molecules for bulk-heterojunction photo voltaic cells. Adv. Funct. Mater. 27, 1605779 (2017).
Eder, T. et al. Interaction between J- and H-type coupling in aggregates of π-conjugated polymers: a single-molecule perspective. Angew. Chem. Int. Ed. 58, 18898–18902 (2019).
Ziffer, M. E. et al. Tuning H- and J-aggregate conduct in π-conjugated polymers by way of noncovalent interactions. J. Phys. Chem. C 122, 18860–18869 (2018).
Liess, A. et al. Exciton coupling of merocyanine dyes from H- to J-type within the stable state by crystal engineering. Nano Lett. 17, 1719–1726 (2017).
Chen, L. et al. Tuning the π-π stacking distance and J-aggregation of DPP-based conjugated polymer by way of introducing insulating polymer. J. Polym. Sci. B Polym. Phys. 54, 838–847 (2016).
Siddiqui, S. & Spano, F. C. H- and J-aggregates of conjugated polymers and oligomers: a theoretical investigation. Chem. Phys. Lett. 308, 99–105 (1999).
Spano, F. C. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43, 429–439 (2010).
Niles, E. T. et al. J-aggregate conduct in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 3, 259–263 (2012).
Spano, F. C. & Silva, C. H- and J-aggregate conduct in polymeric semiconductors. Annu. Rev. Phys. Chem. 65, 477–500 (2014).
Hestand, N. J. & Spano, F. C. Expanded concept of H- and J-molecular aggregates: the results of vibronic coupling and intermolecular cost switch. Chem. Rev. 118, 7069–7163 (2018).
Hestand, N. J. & Spano, F. C. Interference between Coulombic and CT-mediated couplings in molecular aggregates: H- to J-aggregate transformation in perylene-based π-stacks. J. Chem. Phys. 143, 244707 (2015).
Yamagata, H. & Spano, F. C. Sturdy photophysical similarities between conjugated polymers and J-aggregates. J. Phys. Chem. Lett. 5, 622–632 (2014).
Yamagata, H. et al. The red-phase of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV): a disordered HJ-aggregate. J. Chem. Phys. 139, 114903 (2013).
Eder, T. et al. Switching between H- and J-type digital coupling in single conjugated polymer aggregates. Nat. Commun. 8, 1641 (2017).
Hu, D. et al. Collapse of stiff conjugated polymers with chemical defects into ordered, cylindrical conformations. Nature 405, 1030–1033 (2000).
Nguyen, T.-Q., Doan, V. & Schwartz, B. J. Conjugated polymer aggregates in answer: management of interchain interactions. J. Chem. Phys. 110, 4068–4078 (1999).
Traiphol, R. et al. Results of chain conformation and chain size on diploma of aggregation in assembled particles of conjugated polymer in solvents–nonsolvent: a spectroscopic examine. J. Polym. Sci. B Polym. Phys. 48, 894–904 (2010).
Li, T. et al. Impact of solvent on the answer state of conjugated polymer P7DPF together with single-chain to aggregated state construction formation, dynamic evolution, and associated mechanisms. Macromolecules 53, 4264–4273 (2020).
Zhang, H. et al. Impact of solvents on the answer state and movie condensed state constructions of a polyfluorene conjugated polymer within the dynamic evolution course of from answer to movie. J. Phys. Chem. C 123, 27317–27326 (2019).
Xu, Z., Tsai, H., Wang, H.-L. & Cotlet, M. Solvent polarity impact on chain conformation, movie morphology, and optical properties of a water-soluble conjugated polymer. J. Phys. Chem. B 114, 11746–11752 (2010).
Kwon, Y. & Kaufman, L. J. Almost isotropic conjugated polymer aggregates with environment friendly native exciton diffusion. J. Phys. Chem. C 123, 29418–29426 (2019).
Yang, J., Park, H. & Kaufman, L. J. Extremely anisotropic conjugated polymer aggregates: preparation and quantification of bodily and optical anisotropy. J. Phys. Chem. C 121, 13854–13862 (2017).
Jackson, N. E. et al. Conformational order in aggregates of conjugated polymers. J. Am. Chem. Soc. 137, 6254–6262 (2015).
Blatchford, J. W. et al. Photoluminescence in pyridine-based polymers: position of aggregates. Phys. Rev. B 54, 9180–9189 (1996).
Peteanu, L. A. et al. Visualizing core–shell construction in substituted PPV oligomer aggregates utilizing fluorescence lifetime imaging microscopy (FLIM). J. Phys. Chem. C 115, 15607–15616 (2011).
Peteanu, L. A., Chowdhury, S., Wildeman, J. & Sfeir, M. Y. Exciton–exciton annihilation as a probe of interchain interactions in PPV–oligomer aggregates. J. Phys. Chem. B 121, 1707–1714 (2017).
O’Carroll, D. M. et al. Conjugated polymer-based photonic nanostructures. Polym. Chem. 4, 5181–5196 (2013).
Traub, M. C. et al. Unmasking bulk exciton traps and interchain digital interactions with single conjugated polymer aggregates. ACS Nano 6, 523–529 (2012).
Hu, Z. et al. Impression of spine fluorination on nanoscale morphology and excitonic coupling in polythiophenes. Proc. Natl Acad. Sci. USA 114, 5113–5118 (2017).
Raithel, D. et al. Direct statement of spine planarization by way of side-chain alignment in single bulky-substituted polythiophenes. Proc. Natl Acad. Sci. USA 115, 2699–2704 (2018).
Carbonnier, B., Egbe, D. A. M., Birckner, E., Grummt, U.-W. & Pakula, T. Correlation between chain packing and photoluminescence for PPV/PPE in macroscopically oriented state: facet chain results. Macromolecules 38, 7546–7554 (2005).
Wedler, S. et al. What’s the position of planarity and torsional freedom for aggregation in a π-conjugated donor–acceptor mannequin oligomer? J. Mater. Chem. C 8, 4944–4955 (2020).
Fei, Z. et al. Affect of spine fluorination in regioregular poly(3-alkyl-4-fluoro)thiophenes. J. Am. Chem. Soc. 137, 6866–6879 (2015).
He, G. et al. A brand new technique for designing conjugated polymer-based fluorescence sensing movies by way of introduction of conformation controllable facet chains. Macromolecules 44, 703–710 (2011).
Sahoo, D., Sugiyasu, Okay., Tian, Y., Takeuchi, M. & Scheblykin, I. G. Impact of conjugated spine safety on intrinsic and light-induced fluorescence quenching in polythiophenes. Chem. Mater. 26, 4867–4875 (2014).
Clark, J., Silva, C., Pal, R. H. & Spano, F. C. Position of intermolecular coupling within the photophysics of disordered natural semiconductors: combination emission in regioregular polythiophene. Phys. Rev. Lett. 98, 206406 (2007).
Chen, M. S. et al. Management of polymer-packing rrientation in skinny movies by way of artificial tailoring of spine coplanarity. Chem. Mater. 25, 4088–4096 (2013).
Hu, Z. et al. Excitonic vitality migration in conjugated polymers: The vital position of interchain morphology. J. Am. Chem. Soc. 136, 16023–16031 (2014).
Huser, T., Yan, M. & Rothberg, L. J. Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. Proc. Natl Acad. Sci. USA 97, 11187–11191 (2000).
Steiner, F., Vogelsang, J. & Lupton, J. M. Singlet-triplet annihilation limits exciton yield in poly(3-Hexylthiophene). Phys. Rev. Lett. 112, 137402 (2014).
Park, H., Hoang, D. T., Paeng, Okay., Yang, J. & Kaufman, L. J. Conformation-dependent photostability amongst and inside single conjugated polymers. Nano Lett. 15, 7604–7609 (2015).
Brown, P. J. et al. Impact of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67, 064203 (2003).
Lin, H. et al. Fluorescence blinking, exciton dynamics, and vitality switch domains in single conjugated polymer chains. J. Am. Chem. Soc. 130, 7042–7051 (2008).
Habuchi, S., Onda, S. & Vacha, M. Molecular weight dependence of emission depth and emitting websites distribution inside single conjugated polymer molecules. Phys. Chem. Chem. Phys. 13, 1743–1753 (2011).
Adachi, T. et al. Conformational impact on vitality switch in single polythiophene chains. J. Phys. Chem. B 116, 9866–9872 (2012).
Traub, M. C., Lakhwani, G., Bolinger, J. C., Bout, D. V. & Barbara, P. F. Digital vitality switch in extremely aligned MEH-PPV single chains. J. Phys. Chem. B 115, 9941–9947 (2011).
Park, H., Kwon, Y. & Kaufman, L. J. Advanced photophysical behaviors have an effect on single conjugated molecule optical anisotropy measurements. J. Phys. Chem. C 123, 1960–1965 (2019).
Lupton, J. M. Chromophores in conjugated polymers—all straight? ChemPhysChem 13, 901–907 (2012).
Li, Y.-C. et al. Scattering examine of the conformational construction and aggregation conduct of a conjugated polymer answer. Langmuir 25, 4668–4677 (2009).
Pullerits, T., Mirzov, O. & Scheblykin, I. G. Conformational fluctuations and enormous fluorescence spectral diffusion in conjugated polymer single chains at low temperatures. J. Phys. Chem. B 109, 19099–19107 (2005).
Lin, H. et al. Destiny of excitations in conjugated polymers: single-molecule spectroscopy reveals nonemissive “darkish” areas in MEH-PPV particular person chains. Nano Lett. 9, 4456–4461 (2009).
Steiner, F., Lupton, J. M. & Vogelsang, J. Position of triplet-state shelving in natural photovoltaics: single-chain aggregates of poly(3-hexylthiophene) versus mesoscopic multichain aggregates. J. Am. Chem. Soc. 139, 9787–9790 (2017).
Grewer, C. & Brauer, H.-D. Mechanism of the triplet-state quenching by molecular oxygen in answer. J. Phys. Chem. 98, 4230–4235 (1994).
Thomas, A. Okay., Garcia, J. A., Ulibarri-Sanchez, J., Gao, J. & Gray, J. Okay. Excessive intrachain order promotes triplet formation from recombination of long-lived polarons in poly(3-hexylthiophene) J-aggregate nanofibers. ACS Nano 8, 10559–10568 (2014).
Wilhelm, P., Clean, D., Lupton, J. M. & Vogelsang, J. Management of intrachain morphology within the formation of polyfluorene aggregates on the single-molecule stage. ChemPhysChem 21, 961–965 (2020).
Chunwaschirasiri, W., Tanto, B., Huber, D. L. & Winokur, M. J. Chain conformations and photoluminescence of poly(di-n-octylfluorene). Phys. Rev. Lett. 94, 107402 (2005).
Grell, M. et al. Chain geometry, answer aggregation and enhanced dichroism within the liquidcrystalline conjugated polymer poly(9,9-dioctylfluorene). Acta Polym. 49, 439–444 (1998).
Tsoi, W. C. & Lidzey, D. G. Raman spectroscopy of fluorene oligomers within the α-, β- and γ-phases. J. Phys. Condens. Matter 20, 125213 (2008).
Vogelsang, J., Brazard, J., Adachi, T., Bolinger, J. C. & Barbara, P. F. Watching the annealing course of one polymer chain at a time. Angew. Chem. Int. Ed. 50, 2257–2261 (2011).
Fu, Y. & Lakowicz, J. R. A better have a look at polymer annealing. Nature 472, 178–179 (2011).
Clever, A. J. & Gray, J. Okay. Understanding the structural evolution of single conjugated polymer chain conformers. Polymers 8, 388 (2016).
Wang, H. et al. In situ statement of natural single micro-crystal fabrication by solvent vapor annealing. J. Mater. Chem. C 9, 9124–9129 (2021).
Bolinger, J. C. et al. Conformation and vitality switch in single conjugated polymers. Acc. Chem. Res. 45, 1992–2001 (2012).
Feist, F. A. & Basché, T. The folding of particular person conjugated polymer chains throughout annealing. Angew. Chem. Int. Ed. 50, 5256–5257 (2011).
Lee, S. H. et al. Investigation and management of single molecular constructions of meso–meso linked lengthy porphyrin arrays. J. Phys. Chem. B 122, 5121–5125 (2018).
Würsch, D. et al. Molecular water lilies: Orienting single molecules in a polymer movie by solvent vapor annealing. J. Phys. Chem. Lett. 7, 4451–4457 (2016).
Tenopala-Carmona, F., Fronk, S., Bazan, G. C., Samuel, I. D. W. & Penedo, J. C. Actual-time statement of conformational switching in single conjugated polymer chains. Sci. Adv. 4, eaao5786 (2018).
Joung, H. et al. Impression of chain conformation on structural heterogeneity in polymer community. Nano Lett. 22, 5487–5494 (2022).