Jassbi, A. R., Zare, S., Firuzi, O. & Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem. Rev. 15, 829–867 (2016).
Sharifi-Rad, M. et al. Salvia spp plants-from farm to meals purposes and phytopharmacotherapy. Developments Meals Sci. Technol. 80, 242–263 (2018).
Li, M. et al. An ethnopharmacological investigation of medicinal Salvia vegetation (Lamiaceae) in China. Acta Pharm. Sin. B 3, 273–280 (2013).
Hamidpour, M., Hamidpour, R., Hamidpour, S. & Shahlari, M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to forestall and remedy sicknesses corresponding to weight problems, diabetes, despair, dementia, lupus, autism, coronary heart illness, and most cancers. J. Tradit. Complement. Med. 4, 82–88 (2014).
Liu, Q. S. et al. Salvia miltiorrhiza injection restores apoptosis of fibroblast-like synoviocytes cultured with serum from sufferers with rheumatoid arthritis. Mol. Med. Rep. 11, 1476–1482 (2015).
Cao, F. et al. Pure merchandise motion on pathogenic cues in autoimmunity: efficacy in systemic lupus erythematosus and rheumatoid arthritis as in comparison with classical therapies. Pharmacol. Res. 160, 105054 (2020).
Miroddi, M. et al. Systematic evaluate of medical trials assessing pharmacological properties of Salvia species on reminiscence, cognitive impairment and Alzheimer’s illness. CNS Neurosci. Ther. 20, 485–495 (2014).
Benny, A. & Thomas, J. Important oils as therapy technique for Alzheimer’s illness: present and future views. Planta Med. 85, 239–248 (2019).
Walker, J. B., Drew, B. T. & Sytsma, Okay. J. Unravelling species relationships and diversification throughout the iconic California floristic province sages (Salvia subgenus Audibertia, Lamiaceae). Syst. Bot. 40, 826–844 (2015).
Ott, D., Hühn, P. & Claßen-Bockhoff, R. Salvia apiana—A carpenter bee flower?. Flora 221, 82–91 (2016).
Krol, A., Kokotkiewicz, A. & Luczkiewicz, M. White sage (Salvia apiana)–a ritual and medicinal plant of the chaparral: plant traits compared with different Salvia Species. Planta Med. 88, 604–627 (2022).
Dentali, S. J. & Hoffmann, J. J. Potential antiinfective brokers from Eriodictyon angustifolium and Salvia apiana. Pharm. Biol. 30, 223–231 (1992).
Srivedavyasasri, R., Hayes, T. & Ross, S. A. Phytochemical and organic analysis of Salvia apiana. Nat. Prod. Res. 31, 2058–2061 (2017).
Vulganová, Okay. et al. Biologically priceless elements, antioxidant exercise and proteinase inhibition exercise of leaf and callus extracts of Salvia sp.. Nov. Biotechnol. Chim. 18, 25–36 (2019).
Afonso, A. F. et al. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea var. Victoria blue decoctions. Antioxidants 8(8), 241. https://doi.org/10.3390/antiox8080241 (2019).
Lopresti, A. L. Salvia (Sage): a evaluate of its potential cognitive-enhancing and protecting results. Medication R D 17, 53–64. https://doi.org/10.1007/s40268-016-0157-5 (2017).
European Medicines Company. Public Assertion on the Use of Natural Medicinal Merchandise Containing Thujone EMA/HMPC/732886/2010 Rev. 1. (2012).
Al-Mawali, Okay. S. et al. Life cycle evaluation of biodiesel manufacturing utilising waste date seed oil and a novel magnetic catalyst: a round bioeconomy method. Renew. Vitality 170, 832–846 (2021).
Osman, A. I. et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water therapy, soil remediation, development, power storage, and carbon sequestration: a evaluate. Environ. Chem. Lett. 20, 2385–2485 (2022).
Marchev, A. et al. Sage in vitro cultures: a promising software for the manufacturing of bioactive terpenes and phenolic substances. Biotechnol. Lett. 36, 211–221 (2014).
Solar, Y., Skinner, D. Z., Liang, G. H. & Hulbert, S. H. Phylogenetic evaluation of Sorghum and associated taxa utilizing inner transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89, 26–32 (1994).
Taberlet, P. et al. Plant common primer. Plant Mol. Biol. 17, 1105–1109 (1991).
Molvray, M., Kores, P. & Chase, M. Polyphyly of mycoheterotrophic orchids and useful influences on floral and molecular characters. In Monocots: Systematics and Evolution (eds Wilson, Okay. L. & Morrison, D. A.) 441–448 (CSIRO Publishing, 2000).
Soltis, D. E. & Soltis, P. S. Selecting an method and an acceptable gene for phylogenetic evaluation. In Molecular Systematics of Vegetation II: DNA Sequencing (eds Soltis, D. E. et al.) 1–42 (Kluwer Tutorial Publishers, 1998).
Gouy, M., Guindon, S. & Gascuel, O. SeaView model 4: a multiplatform graphical person interface for sequence alignment and phylogenetic tree constructing. Mol. Biol. Evol. 27, 221–224 (2010).
Szopa, A., Kokotkiewicz, A., Luczkiewicz, M. & Ekiert, H. Schisandra lignans manufacturing regulated by totally different bioreactor kind. J. Biotechnol. 247, 11–17 (2017).
Di Ferrante, N. Turbidimetric measurement of acid mucopoly-saccharides and hyaluronidase exercise. J. Biol. Chem. 220, 303–306 (1956).
Studzińska-Sroka, E. et al. Anti-inflammatory exercise and phytochemical profile of Galinsoga Parviflora Cav.. Molecules 23, 2133 (2018).
Gębalski, J., Graczyk, F. & Załuski, D. Paving the best way in the direction of efficient plant-based inhibitors of hyaluronidase and tyrosinase: a essential evaluate on a construction–exercise relationship. J. Enzyme Inhibil. Med. Chem. 37, 1120–1195 (2022).
Meyer, S. E. in The Woody Plant Seed Guide. Agriculture Handbook. Particular Dealing with Strategies and Information for 236 Genera: Salvia L. The U.S. Division of Agriculture (USDA) https://doi.org/10.2979/npj.2009.10.3.300 (2008).
Erland, L. A. E., Giebelhaus, R. T., Victor, J. M. R., Murch, S. J. & Saxena, P. Okay. The morphoregulatory position of thidiazuron: metabolomics-guided speculation era for mechanisms of exercise. Biomolecules 10, 1–34 (2020).
Tsai, Okay. L., Chen, E. G. & Chen, J. T. Thidiazuron-induced environment friendly propagation of Salvia miltiorrhiza by way of in vitro organogenesis and medicinal constituents of regenerated vegetation. Acta Physiol. Plant. 38, 1–9 (2016).
Luczkiewicz, M. et al. Manufacturing of important oils from in vitro cultures of Caryopteris species and comparability of their concentrations with in vivo vegetation. Acta Physiol. Plant. 37, 58 (2015).
Grzegorczyk, I. & Wysokińska, H. Micropropagation of Salvia officinalis L. by shoot ideas. Biotechnologia 2, 212–218 (2004).
Mederos Molina, S., Amaro Luis, J. M. & Luis, J. G. In vitro mass propagation of Salvia canariensis by axillary shoots. Acta Soc. Bot. Pol. 66, 351–354 (2014).
Fraternale, D., Bisio, A. & Ricci, D. Salvia x jamensis J. Compton: in vitro regeneration of shoots by way of TDZ and BA. Plant Biosyst. An. Int. J. Deal. Asp. Plant Biol. 147, 713–716 (2013).
Ali, A. et al. Chemical composition and organic exercise of 4 Salvia important oils and particular person compounds in opposition to two species of mosquitoes. J. Agric. Meals Chem. 63, 447–456 (2015).
Borek, T. T., Hochrein, J. M. & Irwin, A. N. in Composition of the important oils from Rocky Mountain juniper (Juniperus scopulorum), Massive sagebrush (Artemisia tridentata), and White Sage (Salvia apiana). Sandia Nationwide Laboratories, Sandia Company https://doi.org/10.2172/918273. http://www.osti.gov/servlets/purl/918273-Cv5I78/ (2003)
Borek, T. T., Hochrien, J. M. & Irwin, A. N. Composition of the important oil of white sage Salvia apiana. Flavour Fragr. J. 21, 571–572 (2006).
Takeoka, G. R., Hobbs, C. & Park, B.-S. Risky constituents of the aerial components of Salvia apiana Jepson. J. Essent. Oil Res. 22, 241–244 (2010).
Kuzma, Ł et al. Chemical composition and organic actions of important oil from Salvia sclarea vegetation regenerated in vitro. Molecules 14, 1438–1447 (2009).
Arikat, N. A., Jawad, F. M., Karam, N. S. & Shibli, R. A. Micropropagation and accumulation of important oils in wild sage (Salvia fruticosa Mill.). Sci. Hortic. (Amsterdam) 100, 193–202 (2004).
Craft, J. D., Satyal, P. & Setzer, W. N. The chemotaxonomy of frequent sage (Salvia officinalis) based mostly on the risky constituents. Medicines 4, 47 (2017).
European Medicines Company. in Evaluation report on Salvia Officinalis L., folium and Salvia Officinales L., aetheroleum. EMA/HMPC/150801/2015 (2016).
Zámboriné Németh, É. & Thi Nguyen, H. Thujone, a broadly debated risky compound: What will we find out about it?. Phytochem. Rev. 19, 405–423 (2020).
Ben Farhat, M., Jordán, M. J., Chaouch-Hamada, R., Landoulsi, A. & Sotomayor, J. A. Phenophase results on sage (Salvia officinalis L.) yield and composition of important oil. J. Appl. Res. Med. Aromat. Vegetation 3, 87–93 (2016).
Jesionek, A. et al. Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale manufacturing of bioactive risky compounds. Plant Cell. Tissue Organ Cult. 131, 51–64 (2017).
Grzegorczyk, I., Bilichowski, I., Mikiciuk-Olasik, E. & Wysokińska, H. The impact of triacontanol on shoot multiplication and manufacturing of antioxidant compounds in shoot cultures of Salvia officinalis L.. Acta Soc. Bot. Pol. 75, 11–15 (2006).
Grzegorczyk, I. & Wysokińska, H. Liquid shoot tradition of Salvia officinalis L. for micropropagation and manufacturing of antioxidant compounds; impact of triacontanol. Acta Soc. Bot. Pol. 77, 99–10 (2008).
Krol, A., Kokotkiewicz, A., Szopa, A., Ekiert, H. & Luczkiewicz, M. Bioreactor-grown shoot cultures for the secondary metabolite manufacturing. 1–62 (2020). https://doi.org/10.1007/978-3-030-11253-0_34-1.
Grzegorczyk, I. & Wysokińska, H. Antioxidant compounds in Salvia officinalis L. shoot and furry root cultures within the nutrient sprinkle bioreactor. Acta Soc. Bot. Pol. 79, 7–10 (2010).
Villegas-Sánchez, E. et al. In vitro tradition of Rosmarinus officinalis l. In a brief immersion system: affect of two phytohormones on plant progress and carnosol manufacturing. Prescription drugs 14(8), 747. https://doi.org/10.3390/ph14080747 (2021).
Yiannopoulou, Okay. G. & Papageorgiou, S. G. Present and future therapies in Alzheimer illness: an replace. J. Cent. Nerv. Syst. Dis. 12, 117957352090739 (2020).
Ben Jemia, M. et al. Impact of bioclimatic space on the composition and bioactivity of Tunisian Rosmarinus officinalis important oils. Nat. Prod. Res. 29, 213–222 (2015).
Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V. & Tudela, J. Rosmarinus officinalis L. important oils from Spain: composition, antioxidant capability, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial actions. Plant Biosyst. 152, 1282–1292 (2018).
Farhat, A. et al. Effectivity of the optimized microwave assisted extractions on the yield, chemical composition and organic actions of Tunisian Rosmarinus officinalis L. important oil. Meals Bioprod. Course of. 105, 224–233 (2017).
Leporini, M., Bonesi, M., Loizzo, M. R., Passalacqua, N. G. & Tundis, R. The important oil of Salvia rosmarinus Spenn. From Italy as a supply of health-promoting compounds: chemical profile and antioxidant and cholinesterase inhibitory exercise. Vegetation 9, 1–13 (2020).
Orhan, I., Aslan, S., Kartal, M., Şener, B. & Husnu Can Başer, Okay. Inhibitory impact of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Meals Chem. 108, 663–668 (2008).
Tundis, R., Leporini, M., Bonesi, M., Rovito, S. & Passalacqua, N. G. Salvia officinalis L. from Italy: a comparative chemical and organic research of its important oil within the mediterranean context. Molecules 25(24), 5826. https://doi.org/10.3390/molecules25245826 (2020).
El Euch, S. Okay., Hassine, D. B., Cazaux, S., Bouzouita, N. & Bouajila, J. Salvia officinalis important oil: chemical evaluation and analysis of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 120, 253–260 (2019).
Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M. & Perry, E. Okay. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia important oil. Pharmacol. Biochem. Behav. 75, 661–668 (2003).
Perry, N. S. L., Houghton, P. J., Theobald, A., Jenner, P. & Perry, E. Okay. In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia important oil and constituent terpenes. J. Pharm. Pharmacol. 52, 895–902 (2000).
Phrompittayarat, W., Hongratanaworakit, T., Sarin Tadtong, Okay., Sareedenchai, V. & Ingkaninan, Okay. Survey of acetylcholinesterase inhibitory exercise in important oils from fragrant vegetation. Open Conf. Proc. J. 4, 84–84 (2015).
El Basset, W., Kanaan, H., Azar, S., Alhajjar, L. & Haddad, M. Potent antioxidant and acetylcholinesterase inhibition actions of the important oil of Salvia libanotica grown in Lebanon. 7, 75–81 (2020)
Andrey, M. et al. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial actions of Salvia tomentosa Mill important oil. J. BioSci. Biotechnol. 4, 219–229 (2015).
Temel, H. E. et al. Chemical characterization and anticholinesterase results of important oils derived from Salvia species. J. Essent. Oil Res. 28, 322–331 (2016).
Dohi, S., Terasaki, M. & Makino, M. Acetylcholinesterase inhibitory exercise and chemical composition of business important oils. J. Agric. Meals Chem. 57, 4313–4318 (2009).
Khare, R., Upmanyu, N. & Jha, M. Exploring the potential impact of methanolic extract of Salvia officinalis in opposition to UV uncovered pores and skin ageing: in vivo and in vitro mannequin. Curr. Ageing Sci. 14, 46–55 (2021).
Karatoprak, G. Ş et al. Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & Doğan. S. Afr. J. Bot. 146, 36–47 (2022).
Juee, L. Phytochemical characterization and mushroom tyrosinase inhibition of various extracts from Salvia officinalis L. leaves. J. Pharm. Pharmacogn. Res. 10, 605–615 (2022).
Kang, H. S., Kim, H. R., Byun, D. S., Park, H. J. & Cho, J. S. Rosmarinic acid as a tyrosinase inhibitors from Salvia miltiorrhiza. Nat. Prod. Sci. 10, 80–84 (2004).