google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
15.5 C
New York
Wednesday, June 7, 2023

Analysis of the yield, chemical composition and organic properties of important oil from bioreactor-grown cultures of Salvia apiana microshoots


  • Jassbi, A. R., Zare, S., Firuzi, O. & Xiao, J. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem. Rev. 15, 829–867 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Sharifi-Rad, M. et al. Salvia spp plants-from farm to meals purposes and phytopharmacotherapy. Developments Meals Sci. Technol. 80, 242–263 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. et al. An ethnopharmacological investigation of medicinal Salvia vegetation (Lamiaceae) in China. Acta Pharm. Sin. B 3, 273–280 (2013).

    Article 

    Google Scholar
     

  • Hamidpour, M., Hamidpour, R., Hamidpour, S. & Shahlari, M. Chemistry, pharmacology, and medicinal property of sage (Salvia) to forestall and remedy sicknesses corresponding to weight problems, diabetes, despair, dementia, lupus, autism, coronary heart illness, and most cancers. J. Tradit. Complement. Med. 4, 82–88 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Q. S. et al. Salvia miltiorrhiza injection restores apoptosis of fibroblast-like synoviocytes cultured with serum from sufferers with rheumatoid arthritis. Mol. Med. Rep. 11, 1476–1482 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cao, F. et al. Pure merchandise motion on pathogenic cues in autoimmunity: efficacy in systemic lupus erythematosus and rheumatoid arthritis as in comparison with classical therapies. Pharmacol. Res. 160, 105054 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Miroddi, M. et al. Systematic evaluate of medical trials assessing pharmacological properties of Salvia species on reminiscence, cognitive impairment and Alzheimer’s illness. CNS Neurosci. Ther. 20, 485–495 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Benny, A. & Thomas, J. Important oils as therapy technique for Alzheimer’s illness: present and future views. Planta Med. 85, 239–248 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Walker, J. B., Drew, B. T. & Sytsma, Okay. J. Unravelling species relationships and diversification throughout the iconic California floristic province sages (Salvia subgenus Audibertia, Lamiaceae). Syst. Bot. 40, 826–844 (2015).

    Article 

    Google Scholar
     

  • Ott, D., Hühn, P. & Claßen-Bockhoff, R. Salvia apiana—A carpenter bee flower?. Flora 221, 82–91 (2016).

    Article 

    Google Scholar
     

  • Krol, A., Kokotkiewicz, A. & Luczkiewicz, M. White sage (Salvia apiana)–a ritual and medicinal plant of the chaparral: plant traits compared with different Salvia Species. Planta Med. 88, 604–627 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dentali, S. J. & Hoffmann, J. J. Potential antiinfective brokers from Eriodictyon angustifolium and Salvia apiana. Pharm. Biol. 30, 223–231 (1992).

    CAS 

    Google Scholar
     

  • Srivedavyasasri, R., Hayes, T. & Ross, S. A. Phytochemical and organic analysis of Salvia apiana. Nat. Prod. Res. 31, 2058–2061 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Vulganová, Okay. et al. Biologically priceless elements, antioxidant exercise and proteinase inhibition exercise of leaf and callus extracts of Salvia sp.. Nov. Biotechnol. Chim. 18, 25–36 (2019).

    Article 

    Google Scholar
     

  • Afonso, A. F. et al. The health-benefits and phytochemical profile of Salvia apiana and Salvia farinacea var. Victoria blue decoctions. Antioxidants 8(8), 241. https://doi.org/10.3390/antiox8080241 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lopresti, A. L. Salvia (Sage): a evaluate of its potential cognitive-enhancing and protecting results. Medication R D 17, 53–64. https://doi.org/10.1007/s40268-016-0157-5 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • European Medicines Company. Public Assertion on the Use of Natural Medicinal Merchandise Containing Thujone EMA/HMPC/732886/2010 Rev. 1. (2012).

  • Al-Mawali, Okay. S. et al. Life cycle evaluation of biodiesel manufacturing utilising waste date seed oil and a novel magnetic catalyst: a round bioeconomy method. Renew. Vitality 170, 832–846 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Osman, A. I. et al. Biochar for agronomy, animal farming, anaerobic digestion, composting, water therapy, soil remediation, development, power storage, and carbon sequestration: a evaluate. Environ. Chem. Lett. 20, 2385–2485 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marchev, A. et al. Sage in vitro cultures: a promising software for the manufacturing of bioactive terpenes and phenolic substances. Biotechnol. Lett. 36, 211–221 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar, Y., Skinner, D. Z., Liang, G. H. & Hulbert, S. H. Phylogenetic evaluation of Sorghum and associated taxa utilizing inner transcribed spacers of nuclear ribosomal DNA. Theor. Appl. Genet. 89, 26–32 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Taberlet, P. et al. Plant common primer. Plant Mol. Biol. 17, 1105–1109 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molvray, M., Kores, P. & Chase, M. Polyphyly of mycoheterotrophic orchids and useful influences on floral and molecular characters. In Monocots: Systematics and Evolution (eds Wilson, Okay. L. & Morrison, D. A.) 441–448 (CSIRO Publishing, 2000).


    Google Scholar
     

  • Soltis, D. E. & Soltis, P. S. Selecting an method and an acceptable gene for phylogenetic evaluation. In Molecular Systematics of Vegetation II: DNA Sequencing (eds Soltis, D. E. et al.) 1–42 (Kluwer Tutorial Publishers, 1998).

    Chapter 

    Google Scholar
     

  • Gouy, M., Guindon, S. & Gascuel, O. SeaView model 4: a multiplatform graphical person interface for sequence alignment and phylogenetic tree constructing. Mol. Biol. Evol. 27, 221–224 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szopa, A., Kokotkiewicz, A., Luczkiewicz, M. & Ekiert, H. Schisandra lignans manufacturing regulated by totally different bioreactor kind. J. Biotechnol. 247, 11–17 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Di Ferrante, N. Turbidimetric measurement of acid mucopoly-saccharides and hyaluronidase exercise. J. Biol. Chem. 220, 303–306 (1956).

    Article 
    PubMed 

    Google Scholar
     

  • Studzińska-Sroka, E. et al. Anti-inflammatory exercise and phytochemical profile of Galinsoga Parviflora Cav.. Molecules 23, 2133 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gębalski, J., Graczyk, F. & Załuski, D. Paving the best way in the direction of efficient plant-based inhibitors of hyaluronidase and tyrosinase: a essential evaluate on a construction–exercise relationship. J. Enzyme Inhibil. Med. Chem. 37, 1120–1195 (2022).

    Article 

    Google Scholar
     

  • Meyer, S. E. in The Woody Plant Seed Guide. Agriculture Handbook. Particular Dealing with Strategies and Information for 236 Genera: Salvia L. The U.S. Division of Agriculture (USDA) https://doi.org/10.2979/npj.2009.10.3.300 (2008).

  • Erland, L. A. E., Giebelhaus, R. T., Victor, J. M. R., Murch, S. J. & Saxena, P. Okay. The morphoregulatory position of thidiazuron: metabolomics-guided speculation era for mechanisms of exercise. Biomolecules 10, 1–34 (2020).

    Article 

    Google Scholar
     

  • Tsai, Okay. L., Chen, E. G. & Chen, J. T. Thidiazuron-induced environment friendly propagation of Salvia miltiorrhiza by way of in vitro organogenesis and medicinal constituents of regenerated vegetation. Acta Physiol. Plant. 38, 1–9 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Luczkiewicz, M. et al. Manufacturing of important oils from in vitro cultures of Caryopteris species and comparability of their concentrations with in vivo vegetation. Acta Physiol. Plant. 37, 58 (2015).

    Article 

    Google Scholar
     

  • Grzegorczyk, I. & Wysokińska, H. Micropropagation of Salvia officinalis L. by shoot ideas. Biotechnologia 2, 212–218 (2004).


    Google Scholar
     

  • Mederos Molina, S., Amaro Luis, J. M. & Luis, J. G. In vitro mass propagation of Salvia canariensis by axillary shoots. Acta Soc. Bot. Pol. 66, 351–354 (2014).

    Article 

    Google Scholar
     

  • Fraternale, D., Bisio, A. & Ricci, D. Salvia x jamensis J. Compton: in vitro regeneration of shoots by way of TDZ and BA. Plant Biosyst. An. Int. J. Deal. Asp. Plant Biol. 147, 713–716 (2013).


    Google Scholar
     

  • Ali, A. et al. Chemical composition and organic exercise of 4 Salvia important oils and particular person compounds in opposition to two species of mosquitoes. J. Agric. Meals Chem. 63, 447–456 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Borek, T. T., Hochrein, J. M. & Irwin, A. N. in Composition of the important oils from Rocky Mountain juniper (Juniperus scopulorum), Massive sagebrush (Artemisia tridentata), and White Sage (Salvia apiana). Sandia Nationwide Laboratories, Sandia Company https://doi.org/10.2172/918273. http://www.osti.gov/servlets/purl/918273-Cv5I78/ (2003)

  • Borek, T. T., Hochrien, J. M. & Irwin, A. N. Composition of the important oil of white sage Salvia apiana. Flavour Fragr. J. 21, 571–572 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Takeoka, G. R., Hobbs, C. & Park, B.-S. Risky constituents of the aerial components of Salvia apiana Jepson. J. Essent. Oil Res. 22, 241–244 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Kuzma, Ł et al. Chemical composition and organic actions of important oil from Salvia sclarea vegetation regenerated in vitro. Molecules 14, 1438–1447 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arikat, N. A., Jawad, F. M., Karam, N. S. & Shibli, R. A. Micropropagation and accumulation of important oils in wild sage (Salvia fruticosa Mill.). Sci. Hortic. (Amsterdam) 100, 193–202 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Craft, J. D., Satyal, P. & Setzer, W. N. The chemotaxonomy of frequent sage (Salvia officinalis) based mostly on the risky constituents. Medicines 4, 47 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • European Medicines Company. in Evaluation report on Salvia Officinalis L., folium and Salvia Officinales L., aetheroleum. EMA/HMPC/150801/2015 (2016).

  • Zámboriné Németh, É. & Thi Nguyen, H. Thujone, a broadly debated risky compound: What will we find out about it?. Phytochem. Rev. 19, 405–423 (2020).

    Article 

    Google Scholar
     

  • Ben Farhat, M., Jordán, M. J., Chaouch-Hamada, R., Landoulsi, A. & Sotomayor, J. A. Phenophase results on sage (Salvia officinalis L.) yield and composition of important oil. J. Appl. Res. Med. Aromat. Vegetation 3, 87–93 (2016).


    Google Scholar
     

  • Jesionek, A. et al. Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale manufacturing of bioactive risky compounds. Plant Cell. Tissue Organ Cult. 131, 51–64 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Grzegorczyk, I., Bilichowski, I., Mikiciuk-Olasik, E. & Wysokińska, H. The impact of triacontanol on shoot multiplication and manufacturing of antioxidant compounds in shoot cultures of Salvia officinalis L.. Acta Soc. Bot. Pol. 75, 11–15 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Grzegorczyk, I. & Wysokińska, H. Liquid shoot tradition of Salvia officinalis L. for micropropagation and manufacturing of antioxidant compounds; impact of triacontanol. Acta Soc. Bot. Pol. 77, 99–10 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Krol, A., Kokotkiewicz, A., Szopa, A., Ekiert, H. & Luczkiewicz, M. Bioreactor-grown shoot cultures for the secondary metabolite manufacturing. 1–62 (2020). https://doi.org/10.1007/978-3-030-11253-0_34-1.

  • Grzegorczyk, I. & Wysokińska, H. Antioxidant compounds in Salvia officinalis L. shoot and furry root cultures within the nutrient sprinkle bioreactor. Acta Soc. Bot. Pol. 79, 7–10 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Villegas-Sánchez, E. et al. In vitro tradition of Rosmarinus officinalis l. In a brief immersion system: affect of two phytohormones on plant progress and carnosol manufacturing. Prescription drugs 14(8), 747. https://doi.org/10.3390/ph14080747 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yiannopoulou, Okay. G. & Papageorgiou, S. G. Present and future therapies in Alzheimer illness: an replace. J. Cent. Nerv. Syst. Dis. 12, 117957352090739 (2020).

    Article 

    Google Scholar
     

  • Ben Jemia, M. et al. Impact of bioclimatic space on the composition and bioactivity of Tunisian Rosmarinus officinalis important oils. Nat. Prod. Res. 29, 213–222 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Cutillas, A. B., Carrasco, A., Martinez-Gutierrez, R., Tomas, V. & Tudela, J. Rosmarinus officinalis L. important oils from Spain: composition, antioxidant capability, lipoxygenase and acetylcholinesterase inhibitory capacities, and antimicrobial actions. Plant Biosyst. 152, 1282–1292 (2018).

    Article 

    Google Scholar
     

  • Farhat, A. et al. Effectivity of the optimized microwave assisted extractions on the yield, chemical composition and organic actions of Tunisian Rosmarinus officinalis L. important oil. Meals Bioprod. Course of. 105, 224–233 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Leporini, M., Bonesi, M., Loizzo, M. R., Passalacqua, N. G. & Tundis, R. The important oil of Salvia rosmarinus Spenn. From Italy as a supply of health-promoting compounds: chemical profile and antioxidant and cholinesterase inhibitory exercise. Vegetation 9, 1–13 (2020).

    Article 

    Google Scholar
     

  • Orhan, I., Aslan, S., Kartal, M., Şener, B. & Husnu Can Başer, Okay. Inhibitory impact of Turkish Rosmarinus officinalis L. on acetylcholinesterase and butyrylcholinesterase enzymes. Meals Chem. 108, 663–668 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tundis, R., Leporini, M., Bonesi, M., Rovito, S. & Passalacqua, N. G. Salvia officinalis L. from Italy: a comparative chemical and organic research of its important oil within the mediterranean context. Molecules 25(24), 5826. https://doi.org/10.3390/molecules25245826 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • El Euch, S. Okay., Hassine, D. B., Cazaux, S., Bouzouita, N. & Bouajila, J. Salvia officinalis important oil: chemical evaluation and analysis of anti-enzymatic and antioxidant bioactivities. S. Afr. J. Bot. 120, 253–260 (2019).

    Article 

    Google Scholar
     

  • Savelev, S., Okello, E., Perry, N. S. L., Wilkins, R. M. & Perry, E. Okay. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia important oil. Pharmacol. Biochem. Behav. 75, 661–668 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perry, N. S. L., Houghton, P. J., Theobald, A., Jenner, P. & Perry, E. Okay. In-vitro inhibition of human erythrocyte acetylcholinesterase by Salvia lavandulaefolia important oil and constituent terpenes. J. Pharm. Pharmacol. 52, 895–902 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Phrompittayarat, W., Hongratanaworakit, T., Sarin Tadtong, Okay., Sareedenchai, V. & Ingkaninan, Okay. Survey of acetylcholinesterase inhibitory exercise in important oils from fragrant vegetation. Open Conf. Proc. J. 4, 84–84 (2015).

    Article 

    Google Scholar
     

  • El Basset, W., Kanaan, H., Azar, S., Alhajjar, L. & Haddad, M. Potent antioxidant and acetylcholinesterase inhibition actions of the important oil of Salvia libanotica grown in Lebanon. 7, 75–81 (2020)

  • Andrey, M. et al. Acetylcholinesterase inhibitory, antioxidant, and antimicrobial actions of Salvia tomentosa Mill important oil. J. BioSci. Biotechnol. 4, 219–229 (2015).


    Google Scholar
     

  • Temel, H. E. et al. Chemical characterization and anticholinesterase results of important oils derived from Salvia species. J. Essent. Oil Res. 28, 322–331 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Dohi, S., Terasaki, M. & Makino, M. Acetylcholinesterase inhibitory exercise and chemical composition of business important oils. J. Agric. Meals Chem. 57, 4313–4318 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khare, R., Upmanyu, N. & Jha, M. Exploring the potential impact of methanolic extract of Salvia officinalis in opposition to UV uncovered pores and skin ageing: in vivo and in vitro mannequin. Curr. Ageing Sci. 14, 46–55 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Karatoprak, G. Ş et al. Phytochemical profile, antioxidant, antiproliferative, and enzyme inhibition-docking analyses of Salvia ekimiana Celep & Doğan. S. Afr. J. Bot. 146, 36–47 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Juee, L. Phytochemical characterization and mushroom tyrosinase inhibition of various extracts from Salvia officinalis L. leaves. J. Pharm. Pharmacogn. Res. 10, 605–615 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kang, H. S., Kim, H. R., Byun, D. S., Park, H. J. & Cho, J. S. Rosmarinic acid as a tyrosinase inhibitors from Salvia miltiorrhiza. Nat. Prod. Sci. 10, 80–84 (2004).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles