google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
14.3 C
New York
Monday, June 5, 2023

Design and introduction of quaternary ammonium hydroxide‐functionalized graphene oxide quantum dots as a pseudo-homogeneous catalyst for epoxidation of α,β-unsaturated ketones


  • Varma, R. S. Greener and sustainable traits in synthesis of organics and nanomaterials. ACS Maintain. Chem. Eng. 4, 5866–5878 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chng, L. L., Erathodiyil, N. & Ying, J. Y. Nanostructured catalysts for natural transformations. Acc. Chem. Res. 46, 1825–1837 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Garcia, H. Allotropic carbon nanoforms as superior metal-free catalysts or as helps. Adv. Chem. 2014, 906781 (2014).

    Article 

    Google Scholar
     

  • Du, J. T. et al. ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate. Chem. Eng. Sci. 220, 115642 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Karimi, B. & Ramezanzadeh, B. A comparative research on the consequences of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. J. Colloid Interface Sci. 493, 62–76 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, W. et al. Synthesis and purposes of graphene quantum dots: A evaluation. Nanotechnol. Rev. 7, 157–185 (2018).

    Article 

    Google Scholar
     

  • Shen, J., Zhu, Y., Yang, X. & Li, C. Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic gadgets. ChemComm. 48, 3686–3699 (2012).

    CAS 

    Google Scholar
     

  • Xie, R. et al. Graphene quantum dots as sensible probes for biosensing. Anal. Strategies 8, 4001–4016 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cheng, T. Y., Chou, F. P., Huang, S. C., Chang, C. Y. & Wu, T. Ok. Electroluminescence and photocatalytic hydrogen evolution of S, N co-doped graphene oxide quantum dots. J. Mater. Chem. 10, 3650–3658 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Solar, Y. et al. Massive scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys. Chem. Chem. Phys. 15, 9907–9913 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, D. et al. Chopping sp 2 clusters in graphene sheets into colloidal graphene quantum dots with robust inexperienced fluorescence. J. Mater. Chem. 22, 3314–3318 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Gram-scale synthesis of graphene quantum dots from single carbon atoms progress through energetic materials deflagration. Chem. Mater. 27, 4319–4327 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Farshbaf, M. et al. Carbon quantum dots: Latest progresses on synthesis, floor modification and purposes. Artif. Cells Nanomed. Biotechnol. 46, 1331–1348 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hadian-Dehkordi, L. et al. Amphiphilic carbon quantum dots as a bridge to a pseudohomogeneous catalyst for selective oxidative cracking of alkenes to aldehydes: A nonmetallic oxidation system. ACS Appl. Mater. Interfaces 12, 31360–31371 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rezaei, A. et al. Pseudohomogeneous metallic catalyst based mostly on tungstate-decorated amphiphilic carbon quantum dots for selective oxidative scission of alkenes to aldehyde. Sci. Rep. 11, 4411 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mohammadi, M., Khazaei, A., Rezaei, A., Huajun, Z. & Xuwei, S. Ionic-liquid-modified carbon quantum dots as a assist for the immobilization of tungstate ions (WO42–): Heterogeneous nanocatalysts for the oxidation of alcohols in water. ACS Maintain. Chem. Eng. 7, 5283–5291 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Mohammadi, M., Rezaei, A., Khazaei, A., Xuwei, S. & Huajun, Z. Focused improvement of sustainable inexperienced catalysts for oxidation of alcohols through tungstate-decorated multifunctional amphiphilic carbon quantum dots. ACS Appl. Mater. Interfaces 11, 33194–33206 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bayan, R. & Karak, N. Picture-assisted synthesis of a Pd–Ag@CQD nanohybrid and its catalytic effectivity in selling the suzuki–miyaura cross-coupling response beneath ligand-free and ambient circumstances. ACS Omega 2, 8868–8876 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, M. et al. Peroxide- and transition metal-free electrochemical synthesis of α,β-epoxy ketones. Org. Biomol. Chem. 19, 2481–2486 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mirzaei, H. & Emami, S. Latest advances of cytotoxic chalconoids focusing on tubulin polymerization: Synthesis and organic exercise. Eur. J. Med. Chem. 121, 610–639 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nettles, J. H. et al. The binding mode of epothilone A on α,ß-tubulin by electron crystallography. Science 305, 866–869 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hayashi, Ok. I., Nakagawa, M. & Nakayama, M. Nisamycin, a brand new manumycin group antibiotic from Streptomyces sp. K106. I. Taxonomy, fermentation, isolation, physico-chemical and organic propertises. J. Antibiot. 47, 1104–1109 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Hanada, Ok. et al. Isolation and characterization of E–64, a brand new thiol protease inhibitor. Agric. Biol. Chem. 42, 523–528 (1987).


    Google Scholar
     

  • Bauer, Ok., Garbe, D., Surburg, H. Frequent Perfume and Taste Supplies: Preparation, Properties and Makes use of (Wiley, 2008).

  • Sienel, G., Rieth, R. & Rowbottom, Ok. T. Ullmann’s Encyclopedia of Natural Chemical compounds (Wiley-VCH, 1999).


    Google Scholar
     

  • Kim, D. Y. et al. Enantioselective epoxidation of α,β-unsaturated ketones by phase-transfer catalysis utilizing chiral quaternary ammonium salts. Synth. Commun. 33, 435–443 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Reddy, V. Ok., Haritha, B. & Yamashita, M. Extremely diastereoselective epoxidation of α,β-unsaturated carbonyl compounds utilizing sodium peroxide. Lett. Org. Chem. 2, 128–131 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Andrus, M. B. & Poehlein, B. W. Epoxidation of olefins with peracid at low temperature with copper catalysis. Tetrahedron Lett. 41, 1013–1014 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Geng, X. L., Wang, Z., Li, X. Q. & Zhang, C. A easy methodology for epoxidation of olefins utilizing sodium chlorite as an oxidant with no catalyst. J. Org. Chem. 70, 9610–9613 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allen, J. V., Drauz, Ok. H., Flood, R. W., Roberts, S. M. & Skidmore, J. Polyamino acid-catalysed uneven epoxidation: Sodium percarbonate as a supply of base and oxidant. Tetrahedron Lett. 40, 5417–5420 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Hashimoto, N. & Kanda, A. Sensible and environmentally pleasant epoxidation of olefins utilizing oxone. Org. Course of Res. Dev. 6, 405–406 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Jakka, Ok., Liu, J. & Zhao, C. G. Facile epoxidation of α,β-unsaturated ketones with cyclohexylidenebishydroperoxide. Tetrahedron Lett. 48, 1395–1398 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ye, J., Wang, Y., Chen, J. & Liang, X. Trichloroisocyanuric acid: A handy oxidation reagent for phase-transfer catalytic epoxidation of enones beneath non-aqueous circumstances. Adv. Synth. Catal. 346, 691–696 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Baumstark, A. L. & Harden, D. B. Jr. Epoxidation of α,β-unsaturated carbonyl compounds by dimethyldioxirane. J. Org. Chem. 58, 7615–7618 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Targhan, H., Evans, P. & Bahrami, Ok. A evaluation of the position of hydrogen peroxide in natural transformations. J. Ind. Eng. Chem. 104, 295–332 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jin, H. et al. Environment friendly epoxidation of chalcones with urea-hydrogen peroxide beneath ultrasound irradiation. Ultrason. Sonochem. 16, 304–307 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, B., Kang, Y. R., Yang, L. M. & Suo, J. S. Epoxidation of α,β-unsaturated carbonyl compounds in ionic liquid/water biphasic system beneath delicate circumstances. J. Mol. Catal. A Chem. 203, 29–36 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rinaldi, R., de Oliveira, H. F., Schumann, H. & Schuchardt, U. Homogeneously catalyzed epoxidation of α,β-unsaturated ketones utilizing easy aluminum salts and aqueous H2O2—Is it doable. J. Mol. Catal. A Chem. 307, 1–8 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Gao, Q., Ding, Y., Liu, H. & Suo, J. Epoxidation of electron-deficient α,β-unsaturated carbonyl compounds over Keggin heteropoly compounds with aqueous H2O2. J. Chem. Res. 11, 716–718 (2005).

    Article 

    Google Scholar
     

  • Yang, S. G., Hwang, J. P., Park, M. Y., Lee, Ok. & Kim, Y. H. Extremely environment friendly epoxidation of electron-deficient olefins with tetrabutylammonium peroxydisulfate. Tetrahedron 63, 5184–5188 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Karthikeyan, P. et al. A novel l-asparaginyl Amido ethyl methyl imidazolium bromide catalyst for heterogeneous epoxidation of α,β-unsaturated ketones. J. Mol. Liq. 172, 136–139 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bérubé, C., Barbeau, X., Lagüe, P. & Voyer, N. Revisiting the Juliá–Colonna enantioselective epoxidation: supramolecular catalysis in water. Chem. Commun. 53, 5099–5102 (2017).

    Article 

    Google Scholar
     

  • Wang, X., Reisinger, C. M. & Checklist, B. Catalytic uneven epoxidation of cyclic enones. J. Am. Chem. Soc. 130, 6070–6071 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bahrami, Ok. & Targhan, H. A brand new technique to design a graphene oxide supported palladium complicated as a brand new heterogeneous nanocatalyst and software in carbon–carbon and carbon-heteroatom cross-coupling reactions. Appl. Organomet. Chem. 33, e4842 (2019).

    Article 

    Google Scholar
     

  • El-Hnayn, R. et al. One-step synthesis of diamine-functionalized graphene quantum dots from graphene oxide and their chelating and antioxidant actions. Nanomaterials 10, 104 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Muhammad, I., Mannathan, S. & Sasidharan, M. Quaternary ammonium hydroxide-functionalized g-C3N4 catalyst for cardio hydroxylation of arylboronic acids to phenols. J. Chin. Chem. Soc. 67, 1470–1476 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sahudin, M. R., Makhsin, S. R., Ayub, M. A., Saad, N. H., Rani, P. A., Zourob, M. In 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM) (2021).

  • Shen, T.-Y., Jia, P.-Y., Chen, D.-S. & Wang, L.-N. Hydrothermal synthesis of N-doped carbon quantum dots and their software in ion-detection and cell-imaging. Spectrochim. Acta Half A Mol. Biomol. Spectrosc. 248, 119282 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Mutavdžić, D. et al. Willpower of the dimensions of quantum dots by fluorescence spectroscopy. Analyst 136, 2391–2396 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Ultrathin composite membrane of alkaline polymer electrolyte for gasoline cell purposes. J. Mater. Chem. A. 1, 12497–12502 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Lakouraj, M. M., Movassagh, B. & Bahrami, Ok. Delicate and handy epoxidation of α,β-unsaturated ketones by amberlyst A-26 supported hydroperoxide. Synth. Commun. 31, 1237–1242 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Adam, W., Hadjiarapoglou, L. & Smerz, A. Dioxirane epoxidation of α,β-unsaturated ketones. Chem. Ber. 124, 227–232 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Y., Zheng, C., Yang, Y., Zhao, G. & Zou, G. Extremely enantioselective epoxidation of α,β-unsaturated ketones catalyzed by primary-secondary diamines. Adv. Synth. Catal. 353, 3129–3133 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kelly, D. R. & Roberts, S. M. The mechanism of polyleucine catalysed uneven epoxidation. Chem. Commun. 18, 2018–2020 (2004).

    Article 

    Google Scholar
     

  • Rajput, J. Ok. & Kaur, G. Silicotungstic acid catalysed Claisen Schmidt condensation response: An environment friendly protocol for synthesis of 1,3-diaryl-2-propenones. Tetrahedron Lett. 53, 646–649 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Banfi, S., Colonna, S., Molinari, H., Julia, S. & Guixer, J. Uneven epoxidation of electron-poor olefins-V: Affect on stereoselectivity of the construction of poly-α-aminoacids used as catalysts. Tetrahedron 40, 5207–5211 (1984).

    Article 
    CAS 

    Google Scholar
     

  • Yamaguchi, Ok., Mori, Ok., Mizugaki, T., Ebitani, Ok. & Kaneda, Ok. Epoxidation of α,β-unsaturated ketones utilizing hydrogen peroxide within the presence of primary hydrotalcite catalysts. J. Org. Chem. 65, 6897–6903 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pourali, A. R. Polymer-supported oxone and tert-butyl hydroperoxide: New reagents for the epoxidation of α,β-unsaturated aldehydes and ketones. Mendeleev Commun. 20, 113–115 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Seen light-induced cardio epoxidation of α,β-unsaturated ketones mediated by amidines. J. Org. Chem. 83, 13051–13062 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles