5.4 C
New York
Wednesday, March 29, 2023

Digital screening and molecular dynamics simulations present perception into repurposing medicine in opposition to SARS-CoV-2 variants Spike protein/ACE2 interface


  • Perez-Gomez, R. The event of SARS-CoV-2 variants: The gene makes the illness. JDB 9, 58 (2021).

    CAS 

    Google Scholar
     

  • Hoteit, R. & Yassine, H. M. Organic properties of SARS-CoV-2 variants: Epidemiological influence and medical penalties. Vaccines (Basel) 10, 919 (2022).

    CAS 

    Google Scholar
     

  • Mohapatra, R. Ok. et al. SARS-CoV-2 and its variants of concern together with Omicron: A by no means ending pandemic. Chem. Biol. Drug Des. 99, 769–788 (2022).

    CAS 

    Google Scholar
     

  • Partitions, A. C. et al. Construction, perform, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292.e6 (2020).

    CAS 

    Google Scholar
     

  • Zhou, P. et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature 579, 270–273 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727–11734 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Davies, N. G. et al. Estimated transmissibility and influence of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).

    CAS 

    Google Scholar
     

  • Deng, X. et al. Transmission, infectivity, and antibody neutralization of an rising SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv https://doi.org/10.1101/2021.03.07.21252647 (2021).

    Article 

    Google Scholar
     

  • Dhar, M. S. et al. Genomic characterization and epidemiology of an rising SARS-CoV-2 variant in Delhi, India. Science 374, 995–999 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Twohig, Ok. A. et al. Hospital admission and emergency care attendance danger for SARS-CoV-2 delta (B.1.617.2) in contrast with alpha (B.1.1.7) variants of concern: A cohort examine. Lancet Infect. Dis. 22, 35–42 (2022).

    CAS 

    Google Scholar
     

  • Kozlov, M. How does Omicron unfold so quick? A excessive viral load isn’t the reply. Nature https://doi.org/10.1038/d41586-022-00129-z (2022).

    Article 

    Google Scholar
     

  • Shang, J. et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Shah, M. & Woo, H. G. Omicron: A closely mutated SARS-CoV-2 variant reveals stronger binding to ACE2 and potently escapes authorised COVID-19 therapeutic antibodies. Entrance. Immunol. 12, 830527 (2022).


    Google Scholar
     

  • Sharma, P. et al. In silico screening of pure compounds to inhibit interplay of human ACE2 receptor and spike protein of SARS-CoV-2 for the prevention of COVID-19. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.2010599 (2021).

    Article 

    Google Scholar
     

  • Ayyamperumal, S., Jade, D., Tallapaneni, V., Chandrasekar, M. J. N. & Nanjan, M. J. In silico screening of FDA authorised medicine in opposition to ACE2 receptor: Potential therapeutics to inhibit the entry of SARS-CoV-2 to human cells. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1960892 (2021).

    Article 

    Google Scholar
     

  • Kumar, V., Liu, H. & Wu, C. Drug repurposing in opposition to SARS-CoV-2 receptor binding area utilizing ensemble-based digital screening and molecular dynamics simulations. Comput. Biol. Med. 135, 104634 (2021).

    CAS 

    Google Scholar
     

  • Xiong, J. et al. Construction-based digital screening and identification of potential inhibitors of SARS-CoV-2 S-RBD and ACE2 interplay. Entrance. Chem. 9, 740702 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Karki, N. et al. Predicting potential SARS-COV-2 medicine—In depth drug database screening utilizing deep neural community framework SSnet, classical digital screening and docking. IJMS 22, 1573 (2021).

    CAS 

    Google Scholar
     

  • Pirolli, D., Righino, B. & De Rosa, M. C. Concentrating on SARS-CoV-2 spike protein/ACE2 protein-protein interactions: A computational examine. Mol. Inf. 40, 2060080 (2021).

    CAS 

    Google Scholar
     

  • Shin, W.-H., Kumazawa, Ok., Imai, Ok., Hirokawa, T. & Kihara, D. Present challenges and alternatives in designing protein-protein interplay focused medicine. AABC 13, 11–25 (2020).


    Google Scholar
     

  • Ghanakota, P., van Vlijmen, H., Sherman, W. & Beuming, T. Massive-scale validation of mixed-solvent simulations to evaluate hotspots at protein-protein interplay interfaces. J. Chem. Inf. Mannequin. 58, 784–793 (2018).

    CAS 

    Google Scholar
     

  • Deganutti, G., Prischi, F. & Reynolds, C. A. Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. J. Comput. Aided Mol. Des. 35, 195–207 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Pearlman, D. A. & Charifson, P. S. Are free power calculations helpful in apply? A comparability with fast scoring features for the p38 MAP kinase protein system. J. Med. Chem. 44, 3417–3423 (2001).

    CAS 

    Google Scholar
     

  • Greenidge, P. A., Kramer, C., Mozziconacci, J.-C. & Sherman, W. Bettering docking outcomes through reranking of ensembles of ligand poses in a number of X-ray protein conformations with MM-GBSA. J. Chem. Inf. Mannequin. 54, 2697–2717 (2014).

    CAS 

    Google Scholar
     

  • Han, P. et al. Receptor binding and sophisticated buildings of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 185, 630-640.e10 (2022).

    CAS 

    Google Scholar
     

  • Guimond, S. E. et al. Artificial heparan sulfate mimetic pixatimod (PG545) potently inhibits SARS-CoV-2 by disrupting the spike–ACE2 interplay. ACS Cent. Sci. 8, 527–545 (2022).

    CAS 

    Google Scholar
     

  • Lapaillerie, D. et al. Collection of bis-indolyl pyridines and triphenylamines as new inhibitors of SARS-CoV-2 mobile entry by modulating the spike protein/ACE2 interfaces. Antimicrob. Brokers Chemother. 66, e00083-e122 (2022).


    Google Scholar
     

  • Chuang, S.-T. & Buchwald, P. Broad-spectrum small-molecule inhibitors of the SARS-CoV-2 spike—ACE2 protein-protein interplay from a chemical house of privileged protein binders. Prescribed drugs 15, 1084 (2022).

    CAS 

    Google Scholar
     

  • Lu, J. et al. An L-theanine by-product targets in opposition to SARS-CoV-2 and its Delta and Omicron variants. Heliyon 8, e09660 (2022).

    CAS 

    Google Scholar
     

  • Huang, L. et al. Quinolizidines as novel SARS-CoV-2 entry inhibitors. IJMS 23, 9659 (2022).

    CAS 

    Google Scholar
     

  • Illnesses, T. L. I. Transitioning to endemicity with COVID-19 analysis. Lancet Infect. Dis. 22, 297 (2022).


    Google Scholar
     

  • Shaman, J. & Galanti, M. Will SARS-CoV-2 grow to be endemic?. Science 370, 527–529 (2020).

    CAS 

    Google Scholar
     

  • Ozdemir, E. S., Le, H. H., Yildirim, A. & Ranganathan, S. V. In silico screening and testing of FDA authorised small molecules to dam SARS-CoV-2 entry to the host cell by inhibiting spike protein cleavage. Viruses 14(6), 1129. https://doi.org/10.1101/2022.03.07.483324 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kulkarni, S. A. & Ingale, Ok. Chapter 1. In Silico Approaches for Drug Repurposing for SARS-CoV-2 An infection 1–80 (2022). https://doi.org/10.1039/9781839166839-00001.

  • Panda, P. Ok. et al. Construction-based drug designing and immunoinformatics method for SARS-CoV-2. Sci. Adv. 6, eabb8097 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Cui, Q. et al. Compound display identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 an infection. iScience 25, 103684 (2022).

    ADS 
    CAS 

    Google Scholar
     

  • Vatansever, E. C. et al. Bepridil is potent in opposition to SARS-CoV-2 in vitro. Proc. Natl. Acad. Sci. U.S.A. 118, e2012201118 (2021).

    CAS 

    Google Scholar
     

  • Liu, J. et al. Hydroxychloroquine, a much less poisonous by-product of chloroquine, is efficient in inhibiting SARS-CoV-2 an infection in vitro. Cell Discov. 6, 16 (2020).

    CAS 

    Google Scholar
     

  • Mirabelli, C. et al. Morphological Cell Profiling of SARS-CoV-2 An infection Identifies Drug Repurposing Candidates for COVID-19. (2020) https://doi.org/10.1101/2020.05.27.117184.

  • Han, Y. et al. Identification of Candidate COVID-19 Therapeutics Utilizing hPSC-Derived Lung Organoids. (2020) https://doi.org/10.1101/2020.05.05.079095.

  • Drayman, N. et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 373, 931–936 (2021).

    ADS 
    CAS 

    Google Scholar
     

  • Miller, S. R. et al. Predicting drug interactions with human equilibrative nucleoside transporters 1 and a couple of utilizing useful knockout cell strains and Bayesian modeling. Mol. Pharmacol. 99, 147–162 (2021).

    CAS 

    Google Scholar
     

  • Smith, M. & Smith, J. C. Repurposing Therapeutics for COVID-19: Supercomputer-Primarily based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. https://chemrxiv.org/interact/chemrxiv/article-details/60c74980f96a00352b28727c (2020) https://doi.org/10.26434/chemrxiv.11871402.v4.

  • Ebrahimi, M., Karami, L. & Alijanianzadeh, M. Computational repurposing method for focusing on the essential spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants utilizing exhaustive structure-based digital screening, molecular dynamic simulations and MM-PBSA strategies. Comput. Biology and Drugs 147, 105709 (2022).

    CAS 

    Google Scholar
     

  • Khan, A. A., Baildya, N., Dutta, T. & Ghosh, N. N. Inhibitory effectivity of potential medicine in opposition to SARS-CoV-2 by blocking human angiotensin changing enzyme-2: Digital screening and molecular dynamics examine. Microb. Pathog. 152, 104762 (2021).

    CAS 

    Google Scholar
     

  • Simpson, Ok. & Jarvis, B. Fexofenadine: A overview of its use within the administration of seasonal allergic rhinitis and persistent idiopathic urticaria. Medicine 59, 301–321 (2000).

    CAS 

    Google Scholar
     

  • Reznikov, L. R. et al. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem. Biophys. Res. Commun. 538, 173–179 (2021).

    CAS 

    Google Scholar
     

  • Singh, S. & Florez, H. Coronavirus illness 2019 drug discovery by molecular docking. F1000Res 9, 502 (2020).

    CAS 

    Google Scholar
     

  • Ennis, M. & Tiligada, Ok. Histamine receptors and COVID-19. Inflamm. Res. 70, 67–75 (2021).

    CAS 

    Google Scholar
     

  • Malone, R. W. et al. COVID-19: Famotidine, histamine, mast cells, and mechanisms. Entrance. Pharmacol. 12, 633680 (2021).

    CAS 

    Google Scholar
     

  • Hogan, R. B. II. et al. Twin-histamine receptor blockade with cetirizine—Famotidine reduces pulmonary signs in COVID-19 sufferers. Pulm. Pharmacol. Ther. 63, 101942 (2020).


    Google Scholar
     

  • Pinto, M. D. et al. Antihistamines for postacute sequelae of SARS-CoV-2 an infection. J. Nurse Pract. 18, 335–338 (2022).


    Google Scholar
     

  • Culy, C. R. & Jarvis, B. Repaglinide: A overview of its therapeutic use in sort 2 diabetes mellitus. Medicine 61, 1625–1660 (2001).

    CAS 

    Google Scholar
     

  • Si, J., Zhao, X., Gao, S., Huang, D. & Sui, M. Advances in supply of Irinotecan (CPT-11) lively metabolite 7-ethyl-10-hydroxycamptothecin. Int. J. Pharm. 568, 118499 (2019).

    CAS 

    Google Scholar
     

  • Lestner, J. & Hope, W. W. Itraconazole: An replace on pharmacology and medical use for remedy of invasive and allergic fungal infections. Knowledgeable Opin. Drug Metab. Toxicol. 9, 911–926 (2013).

    CAS 

    Google Scholar
     

  • Tristán-Flores, F. E. et al. Identification of potential inhibitors of SARS-CoV-2 S protein–ACE2 interplay by in silico drug repurposing. F1000Res 10, 358 (2021).


    Google Scholar
     

  • Ahmed, M. et al. Identification of Atovaquone and Mebendazole as Repurposed Medicine with Antiviral Exercise In opposition to SARS-CoV-2 (Model 6). https://chemrxiv.org/interact/chemrxiv/article-details/612ff2f8abeb6328b6c624cd (2021) https://doi.org/10.26434/chemrxiv-2021-b3fv1-v7.

  • Liesenborghs, L. et al. Itraconazole for COVID-19: Preclinical research and a proof-of-concept randomized medical trial. EBioMedicine 66, 103288 (2021).

    CAS 

    Google Scholar
     

  • Van Damme, E. et al. In vitro exercise of itraconazole in opposition to SARS-CoV-2. J. Med. Virol. 93, 4454–4460 (2021).


    Google Scholar
     

  • Ellis, A. Ok., Murrieta-Aguttes, M., Furey, S., Picard, P. & Carlsten, C. Impact of fexofenadine hydrochloride on allergic rhinitis aggravated by air pollution. ERJ Open Res. 7, 00806–02020 (2021).


    Google Scholar
     

  • Buonsenso, D. et al. Recovering or persisting: The immunopathological options of SARS-CoV-2 an infection in youngsters. JCM 11, 4363 (2022).

    CAS 

    Google Scholar
     

  • Di Sante, G. et al. Immunopathology of SARS-CoV-2 an infection: A deal with T regulatory and B cell responses in youngsters in contrast with adults. Kids 9, 681 (2022).


    Google Scholar
     

  • Aceti, A. et al. Serum S100B protein as a marker of severity in Covid-19 sufferers. Sci. Rep. 10, 18665 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Buonsenso, D. et al. Proof of lung perfusion defects and ongoing irritation in an adolescent with post-acute sequelae of SARS-CoV-2 an infection. Lancet Baby Adolesc. Well being 5, 677–680 (2021).

    CAS 

    Google Scholar
     

  • Kozlov, M. Might a nostril spray a day hold COVID away?. Nature https://doi.org/10.1038/d41586-022-03341-z (2022).

    Article 

    Google Scholar
     

  • Banks, J. L. et al. Built-in modeling program, utilized chemical idea (IMPACT). J. Comput. Chem. 26, 1752–1780 (2005).

    CAS 

    Google Scholar
     

  • Ponga, M. Quantifying the adhesive power between the SARS-CoV-2 S-proteins and human receptor and its impact in therapeutics. Sci. Rep. 10, 17538 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • Righino, B. et al. Structural mannequin of the full-length Ser/Thr protein kinase StkP from S. pneumoniae and its recognition of peptidoglycan fragments. J. Biomol. Struct. Dyn. 36, 3666–3679 (2018).

    CAS 

    Google Scholar
     

  • Halgren, T. A. Figuring out and characterizing binding websites and assessing druggability. J. Chem. Inf. Mannequin. 49, 377–389 (2009).

    CAS 

    Google Scholar
     

  • Irwin, J. J. & Shoichet, B. Ok. ZINC—A free database of commercially out there compounds for digital screening. J. Chem. Inf. Mannequin. 45, 177–182 (2005).

    CAS 

    Google Scholar
     

  • Davies, M. P. et al. Construction-based design of potent selective nanomolar type-II inhibitors of glycogen synthase kinase-3β. J. Med. Chem. 64, 1497–1509 (2021).

    CAS 

    Google Scholar
     

  • De Donato, M. et al. Identification and antitumor exercise of a novel inhibitor of the NIMA-related kinase NEK6. Sci. Rep. 8, 16047 (2018).

    ADS 

    Google Scholar
     

  • Wishart, D. S. et al. DrugBank: A knowledgebase for medicine, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).

    CAS 

    Google Scholar
     

  • Wishart, D. S. et al. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res. 41, D801–D807 (2012).


    Google Scholar
     

  • Zhou, Y. et al. Therapeutic goal database replace 2022: Facilitating drug discovery with enriched comparative knowledge of focused brokers. Nucleic Acids Res. 50, D1398–D1407 (2022).

    CAS 

    Google Scholar
     

  • Hirohara, M., Saito, Y., Koda, Y., Sato, Ok. & Sakakibara, Y. Convolutional neural community based mostly on SMILES illustration of compounds for detecting chemical motif. BMC Bioinformatics 19, 526 (2018).

    CAS 

    Google Scholar
     

  • Lu, C. et al. OPLS4: Bettering power subject accuracy on difficult regimes of chemical house. J. Chem. Principle Comput. 17, 4291–4300 (2021).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles