Perez-Gomez, R. The event of SARS-CoV-2 variants: The gene makes the illness. JDB 9, 58 (2021).
Hoteit, R. & Yassine, H. M. Organic properties of SARS-CoV-2 variants: Epidemiological influence and medical penalties. Vaccines (Basel) 10, 919 (2022).
Mohapatra, R. Ok. et al. SARS-CoV-2 and its variants of concern together with Omicron: A by no means ending pandemic. Chem. Biol. Drug Des. 99, 769–788 (2022).
Partitions, A. C. et al. Construction, perform, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292.e6 (2020).
Zhou, P. et al. A pneumonia outbreak related to a brand new coronavirus of possible bat origin. Nature 579, 270–273 (2020).
Shang, J. et al. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727–11734 (2020).
Davies, N. G. et al. Estimated transmissibility and influence of SARS-CoV-2 lineage B.1.1.7 in England. Science 372, eabg3055 (2021).
Deng, X. et al. Transmission, infectivity, and antibody neutralization of an rising SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv https://doi.org/10.1101/2021.03.07.21252647 (2021).
Dhar, M. S. et al. Genomic characterization and epidemiology of an rising SARS-CoV-2 variant in Delhi, India. Science 374, 995–999 (2021).
Mlcochova, P. et al. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature 599, 114–119 (2021).
Twohig, Ok. A. et al. Hospital admission and emergency care attendance danger for SARS-CoV-2 delta (B.1.617.2) in contrast with alpha (B.1.1.7) variants of concern: A cohort examine. Lancet Infect. Dis. 22, 35–42 (2022).
Kozlov, M. How does Omicron unfold so quick? A excessive viral load isn’t the reply. Nature https://doi.org/10.1038/d41586-022-00129-z (2022).
Shang, J. et al. Structural foundation of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).
Shah, M. & Woo, H. G. Omicron: A closely mutated SARS-CoV-2 variant reveals stronger binding to ACE2 and potently escapes authorised COVID-19 therapeutic antibodies. Entrance. Immunol. 12, 830527 (2022).
Sharma, P. et al. In silico screening of pure compounds to inhibit interplay of human ACE2 receptor and spike protein of SARS-CoV-2 for the prevention of COVID-19. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.2010599 (2021).
Ayyamperumal, S., Jade, D., Tallapaneni, V., Chandrasekar, M. J. N. & Nanjan, M. J. In silico screening of FDA authorised medicine in opposition to ACE2 receptor: Potential therapeutics to inhibit the entry of SARS-CoV-2 to human cells. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2021.1960892 (2021).
Kumar, V., Liu, H. & Wu, C. Drug repurposing in opposition to SARS-CoV-2 receptor binding area utilizing ensemble-based digital screening and molecular dynamics simulations. Comput. Biol. Med. 135, 104634 (2021).
Xiong, J. et al. Construction-based digital screening and identification of potential inhibitors of SARS-CoV-2 S-RBD and ACE2 interplay. Entrance. Chem. 9, 740702 (2021).
Karki, N. et al. Predicting potential SARS-COV-2 medicine—In depth drug database screening utilizing deep neural community framework SSnet, classical digital screening and docking. IJMS 22, 1573 (2021).
Pirolli, D., Righino, B. & De Rosa, M. C. Concentrating on SARS-CoV-2 spike protein/ACE2 protein-protein interactions: A computational examine. Mol. Inf. 40, 2060080 (2021).
Shin, W.-H., Kumazawa, Ok., Imai, Ok., Hirokawa, T. & Kihara, D. Present challenges and alternatives in designing protein-protein interplay focused medicine. AABC 13, 11–25 (2020).
Ghanakota, P., van Vlijmen, H., Sherman, W. & Beuming, T. Massive-scale validation of mixed-solvent simulations to evaluate hotspots at protein-protein interplay interfaces. J. Chem. Inf. Mannequin. 58, 784–793 (2018).
Deganutti, G., Prischi, F. & Reynolds, C. A. Supervised molecular dynamics for exploring the druggability of the SARS-CoV-2 spike protein. J. Comput. Aided Mol. Des. 35, 195–207 (2021).
Pearlman, D. A. & Charifson, P. S. Are free power calculations helpful in apply? A comparability with fast scoring features for the p38 MAP kinase protein system. J. Med. Chem. 44, 3417–3423 (2001).
Greenidge, P. A., Kramer, C., Mozziconacci, J.-C. & Sherman, W. Bettering docking outcomes through reranking of ensembles of ligand poses in a number of X-ray protein conformations with MM-GBSA. J. Chem. Inf. Mannequin. 54, 2697–2717 (2014).
Han, P. et al. Receptor binding and sophisticated buildings of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell 185, 630-640.e10 (2022).
Guimond, S. E. et al. Artificial heparan sulfate mimetic pixatimod (PG545) potently inhibits SARS-CoV-2 by disrupting the spike–ACE2 interplay. ACS Cent. Sci. 8, 527–545 (2022).
Lapaillerie, D. et al. Collection of bis-indolyl pyridines and triphenylamines as new inhibitors of SARS-CoV-2 mobile entry by modulating the spike protein/ACE2 interfaces. Antimicrob. Brokers Chemother. 66, e00083-e122 (2022).
Chuang, S.-T. & Buchwald, P. Broad-spectrum small-molecule inhibitors of the SARS-CoV-2 spike—ACE2 protein-protein interplay from a chemical house of privileged protein binders. Prescribed drugs 15, 1084 (2022).
Lu, J. et al. An L-theanine by-product targets in opposition to SARS-CoV-2 and its Delta and Omicron variants. Heliyon 8, e09660 (2022).
Huang, L. et al. Quinolizidines as novel SARS-CoV-2 entry inhibitors. IJMS 23, 9659 (2022).
Illnesses, T. L. I. Transitioning to endemicity with COVID-19 analysis. Lancet Infect. Dis. 22, 297 (2022).
Shaman, J. & Galanti, M. Will SARS-CoV-2 grow to be endemic?. Science 370, 527–529 (2020).
Ozdemir, E. S., Le, H. H., Yildirim, A. & Ranganathan, S. V. In silico screening and testing of FDA authorised small molecules to dam SARS-CoV-2 entry to the host cell by inhibiting spike protein cleavage. Viruses 14(6), 1129. https://doi.org/10.1101/2022.03.07.483324 (2022).
Kulkarni, S. A. & Ingale, Ok. Chapter 1. In Silico Approaches for Drug Repurposing for SARS-CoV-2 An infection 1–80 (2022). https://doi.org/10.1039/9781839166839-00001.
Panda, P. Ok. et al. Construction-based drug designing and immunoinformatics method for SARS-CoV-2. Sci. Adv. 6, eabb8097 (2020).
Cui, Q. et al. Compound display identifies the small molecule Q34 as an inhibitor of SARS-CoV-2 an infection. iScience 25, 103684 (2022).
Vatansever, E. C. et al. Bepridil is potent in opposition to SARS-CoV-2 in vitro. Proc. Natl. Acad. Sci. U.S.A. 118, e2012201118 (2021).
Liu, J. et al. Hydroxychloroquine, a much less poisonous by-product of chloroquine, is efficient in inhibiting SARS-CoV-2 an infection in vitro. Cell Discov. 6, 16 (2020).
Mirabelli, C. et al. Morphological Cell Profiling of SARS-CoV-2 An infection Identifies Drug Repurposing Candidates for COVID-19. (2020) https://doi.org/10.1101/2020.05.27.117184.
Han, Y. et al. Identification of Candidate COVID-19 Therapeutics Utilizing hPSC-Derived Lung Organoids. (2020) https://doi.org/10.1101/2020.05.05.079095.
Drayman, N. et al. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science 373, 931–936 (2021).
Miller, S. R. et al. Predicting drug interactions with human equilibrative nucleoside transporters 1 and a couple of utilizing useful knockout cell strains and Bayesian modeling. Mol. Pharmacol. 99, 147–162 (2021).
Smith, M. & Smith, J. C. Repurposing Therapeutics for COVID-19: Supercomputer-Primarily based Docking to the SARS-CoV-2 Viral Spike Protein and Viral Spike Protein-Human ACE2 Interface. https://chemrxiv.org/interact/chemrxiv/article-details/60c74980f96a00352b28727c (2020) https://doi.org/10.26434/chemrxiv.11871402.v4.
Ebrahimi, M., Karami, L. & Alijanianzadeh, M. Computational repurposing method for focusing on the essential spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants utilizing exhaustive structure-based digital screening, molecular dynamic simulations and MM-PBSA strategies. Comput. Biology and Drugs 147, 105709 (2022).
Khan, A. A., Baildya, N., Dutta, T. & Ghosh, N. N. Inhibitory effectivity of potential medicine in opposition to SARS-CoV-2 by blocking human angiotensin changing enzyme-2: Digital screening and molecular dynamics examine. Microb. Pathog. 152, 104762 (2021).
Simpson, Ok. & Jarvis, B. Fexofenadine: A overview of its use within the administration of seasonal allergic rhinitis and persistent idiopathic urticaria. Medicine 59, 301–321 (2000).
Reznikov, L. R. et al. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem. Biophys. Res. Commun. 538, 173–179 (2021).
Singh, S. & Florez, H. Coronavirus illness 2019 drug discovery by molecular docking. F1000Res 9, 502 (2020).
Ennis, M. & Tiligada, Ok. Histamine receptors and COVID-19. Inflamm. Res. 70, 67–75 (2021).
Malone, R. W. et al. COVID-19: Famotidine, histamine, mast cells, and mechanisms. Entrance. Pharmacol. 12, 633680 (2021).
Hogan, R. B. II. et al. Twin-histamine receptor blockade with cetirizine—Famotidine reduces pulmonary signs in COVID-19 sufferers. Pulm. Pharmacol. Ther. 63, 101942 (2020).
Pinto, M. D. et al. Antihistamines for postacute sequelae of SARS-CoV-2 an infection. J. Nurse Pract. 18, 335–338 (2022).
Culy, C. R. & Jarvis, B. Repaglinide: A overview of its therapeutic use in sort 2 diabetes mellitus. Medicine 61, 1625–1660 (2001).
Si, J., Zhao, X., Gao, S., Huang, D. & Sui, M. Advances in supply of Irinotecan (CPT-11) lively metabolite 7-ethyl-10-hydroxycamptothecin. Int. J. Pharm. 568, 118499 (2019).
Lestner, J. & Hope, W. W. Itraconazole: An replace on pharmacology and medical use for remedy of invasive and allergic fungal infections. Knowledgeable Opin. Drug Metab. Toxicol. 9, 911–926 (2013).
Tristán-Flores, F. E. et al. Identification of potential inhibitors of SARS-CoV-2 S protein–ACE2 interplay by in silico drug repurposing. F1000Res 10, 358 (2021).
Ahmed, M. et al. Identification of Atovaquone and Mebendazole as Repurposed Medicine with Antiviral Exercise In opposition to SARS-CoV-2 (Model 6). https://chemrxiv.org/interact/chemrxiv/article-details/612ff2f8abeb6328b6c624cd (2021) https://doi.org/10.26434/chemrxiv-2021-b3fv1-v7.
Liesenborghs, L. et al. Itraconazole for COVID-19: Preclinical research and a proof-of-concept randomized medical trial. EBioMedicine 66, 103288 (2021).
Van Damme, E. et al. In vitro exercise of itraconazole in opposition to SARS-CoV-2. J. Med. Virol. 93, 4454–4460 (2021).
Ellis, A. Ok., Murrieta-Aguttes, M., Furey, S., Picard, P. & Carlsten, C. Impact of fexofenadine hydrochloride on allergic rhinitis aggravated by air pollution. ERJ Open Res. 7, 00806–02020 (2021).
Buonsenso, D. et al. Recovering or persisting: The immunopathological options of SARS-CoV-2 an infection in youngsters. JCM 11, 4363 (2022).
Di Sante, G. et al. Immunopathology of SARS-CoV-2 an infection: A deal with T regulatory and B cell responses in youngsters in contrast with adults. Kids 9, 681 (2022).
Aceti, A. et al. Serum S100B protein as a marker of severity in Covid-19 sufferers. Sci. Rep. 10, 18665 (2020).
Buonsenso, D. et al. Proof of lung perfusion defects and ongoing irritation in an adolescent with post-acute sequelae of SARS-CoV-2 an infection. Lancet Baby Adolesc. Well being 5, 677–680 (2021).
Kozlov, M. Might a nostril spray a day hold COVID away?. Nature https://doi.org/10.1038/d41586-022-03341-z (2022).
Banks, J. L. et al. Built-in modeling program, utilized chemical idea (IMPACT). J. Comput. Chem. 26, 1752–1780 (2005).
Ponga, M. Quantifying the adhesive power between the SARS-CoV-2 S-proteins and human receptor and its impact in therapeutics. Sci. Rep. 10, 17538 (2020).
Righino, B. et al. Structural mannequin of the full-length Ser/Thr protein kinase StkP from S. pneumoniae and its recognition of peptidoglycan fragments. J. Biomol. Struct. Dyn. 36, 3666–3679 (2018).
Halgren, T. A. Figuring out and characterizing binding websites and assessing druggability. J. Chem. Inf. Mannequin. 49, 377–389 (2009).
Irwin, J. J. & Shoichet, B. Ok. ZINC—A free database of commercially out there compounds for digital screening. J. Chem. Inf. Mannequin. 45, 177–182 (2005).
Davies, M. P. et al. Construction-based design of potent selective nanomolar type-II inhibitors of glycogen synthase kinase-3β. J. Med. Chem. 64, 1497–1509 (2021).
De Donato, M. et al. Identification and antitumor exercise of a novel inhibitor of the NIMA-related kinase NEK6. Sci. Rep. 8, 16047 (2018).
Wishart, D. S. et al. DrugBank: A knowledgebase for medicine, drug actions and drug targets. Nucleic Acids Res. 36, D901–D906 (2008).
Wishart, D. S. et al. HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Res. 41, D801–D807 (2012).
Zhou, Y. et al. Therapeutic goal database replace 2022: Facilitating drug discovery with enriched comparative knowledge of focused brokers. Nucleic Acids Res. 50, D1398–D1407 (2022).
Hirohara, M., Saito, Y., Koda, Y., Sato, Ok. & Sakakibara, Y. Convolutional neural community based mostly on SMILES illustration of compounds for detecting chemical motif. BMC Bioinformatics 19, 526 (2018).
Lu, C. et al. OPLS4: Bettering power subject accuracy on difficult regimes of chemical house. J. Chem. Principle Comput. 17, 4291–4300 (2021).