Fu, C. et al. The pure product carolacton inhibits folate-dependent C1 metabolism by focusing on fold/MTHFD. Nat. Commun. 8, 1529–1537 (2017).
Asaba, T., Katoh, Y., Urabe, D. & Inoue, M. Complete synthesis of crotophorbolone. Angew. Chem. Int. Ed. 54, 14457–14461 (2015).
Irschik, H. et al. Isolation, construction elucidation, and organic exercise of maltepolides: exceptional macrolides from myxobacteria. Angew. Chem. Int. Ed. 52, 5402–5405 (2013).
Davies, S. S., Amarnath, V., Brame, C. J., Boutaud, O. & Roberts, L. N. Measurement of power oxidative and inflammatory stress by quantification of isoketal/levuglandin γ-ketoaldehyde protein adducts utilizing liquid chromatography tandem mass spectrometry. Nat. Protoc. 2, 2079–2091 (2007).
Zhang, S., Duan, W. & Wang, W. Environment friendly, enantioselective organocatalytic synthesis of Trichostatin A. Adv. Synth. Catal. 348, 1228–1234 (2006).
Radin, N. S. Drug design: hiding in full view. Drug Dev. Res. 69, 15–25 (2008).
Wu, Y. et al. Palladium-catalysed mono-α-alkenylation of ketones with alkenyl tosylates. Chem. Commun. 53, 952–955 (2017). For latest examples, see references 7-12.
Huang, Y., Huang, R. & Zhao, Y. Cobalt-catalyzed enantioselective vinylation of activated ketones and imines. J. Am. Chem. Soc. 138, 6571–6576 (2016).
Guo, J. et al. Nickel (II)-catalyzed enantioselective α-vinylation of β-keto amides/esters with hypervalent iodine salts. Org. Lett. 18, 5540–5543 (2016).
Grigalunas, M., Ankner, T., Norrby, P., Wiest, O. & Helquist, P. Palladium-catalyzed alkenylation of ketone enolates underneath delicate circumstances. Org. Lett. 16, 3970–3973 (2014).
Ankner, T., Cosner, C. C. & Helquist, P. Palladium- and nickel-catalyzed alkenylation of enolates. Chem.—Eur. J. 19, 1858–1871 (2013).
Ooi, T., Goto, R. & Maruoka, Ok. Fluorotetraphenylbismuth: a brand new reagent for environment friendly regioselective α-phenylation of carbonyl compounds. J. Am. Chem. Soc. 125, 10494–10495 (2003).
Ohnishi, N., Yasuda, S., Nagao, Ok. & Ohmiya, H. Synergistic N-heterocyclic carbene/palladium-catalyzed aldehyde acylation of allylic amines. Asian J. Org. Chem. 8, 1133–1135 (2019).
Haruki, H., Yasuda, S., Nagao, Ok. & Ohmiya, H. Dehydrative allylation between aldehydes and allylic alcohols via synergistic N-heterocyclic carbene/palladium catalysis. Chem. -Eur. J. 25, 724–727 (2019).
Trongsiriwat, N., Li, M., Pascual-Escudero, A., Yucel, B. & Walsh, P. J. Palladium-catalyzed allylic alkylation of 2-aryl-1,3-dithianes, an umpolung synthesis of β,γ-unsaturated ketones. Adv. Synth. Catal. 361, 502–509 (2019).
Medina, J. M., Moreno, J., Racine, S., Du, S. & Garg, N. Ok. Mizoroki-heck cyclizations of amide derivatives for the introduction of quaternary facilities. Angew. Chem. Int. Ed. 56, 6567–6571 (2017).
Yao, Ok. et al. 1,3-dithianes as acyl anion equivalents in Pd-catalyzed uneven allylic substitution. Org. Lett. 18, 6296–6299 (2016).
Poulsen, T. B., Bernardi, L., Bell, M. & Jørgensen, Ok. A. Organocatalytic enantioselective nucleophilic vinylic substitution. Angew. Chem. Int. Ed. 45, 6551–6554 (2006).
Chieffi, A., Kamikawa, Ok., Ahman, J., Fox, J. M. & Buchwald, S. L. Catalytic uneven vinylation of ketone enolates. Org. Lett. 3, 1897–1900 (2001).
Grigalunas, M., Ankner, T., Norrby, P., Wiest, O. & Helquist, P. Ni-catalyzed alkenylation of ketone enolates underneath delicate circumstances: catalyst identification and optimization. J. Am. Chem. Soc. 137, 7019–7022 (2015).
Lou, S. & Fu, G. C. Enantioselective alkenylation through nickel-catalyzed cross-coupling with organozirconium reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010).
Stevens, J. M. & MacMillan, D. W. C. Enantioselective α-alkenylation of aldehydes with boronic acids through the synergistic mixture of copper(II) and amine catalysis. J. Am. Chem. Soc. 135, 11756–11759 (2013).
Skucas, E. & MacMillan, D. W. C. Enantioselective α-vinylation of aldehydes through the synergistic mixture of copper and amine catalysis. J. Am. Chem. Soc. 134, 9090–9093 (2012).
Kim, H. & MacMillan, D. W. C. Enantioselective organo-SOMO catalysis: the α-vinylation of aldehydes. J. Am. Chem. Soc. 130, 398–399 (2008).
Liu, H. et al. Cooperative N-heterocyclic carbene/nickel-catalyzed hydroacylation of 1,3-dienes with aldehydes in water. ACS Catal. 12, 1657–1663 (2022).
Yuan, Y., Zhang, X., Qian, H. & Ma, S. Catalytic enantioselective allene–anhydride method to β,γ-unsaturated enones bearing an α-all-carbon-quaternary heart. Chem. Sci. 11, 9115–9121 (2020).
Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An outline of N-heterocyclic carbenes. Nature 510, 485–496 (2014).
Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).
Zhang, C., Hooper, J. F. & Lupton, D. W. N-heterocyclic carbene catalysis through the α,β-unsaturated acyl azolium. ACS Catal. 7, 2583–2596 (2017).
Patel, N. R., Kelly, C. B., Siegenfeld, A. P. & Molander, G. A. Delicate, redox-neutral alkylation of imines enabled by an natural photocatalyst. ACS Catal. 7, 1766–1770 (2017).
Jia, J., Lefebvre, Q. & Rueping, M. Reductive coupling of imines with redox-active esters by seen mild photoredox organocatalysis. Org. Chem. Entrance. 7, 602–608 (2020).
Ji, P. et al. Seen-light-mediated, chemo- and stereoselective radical course of for the synthesis of C‑glycoamino acids. Org. Lett. 21, 3086–3092 (2019).
Zhang, H.-H. & Yu, S. Radical alkylation of imines with 4‑alkyl-1,4-dihydropyridines enabled by photoredox/brønsted acid cocatalysis. J. Org. Chem. 82, 9995–10006 (2017).
Plasko, D. P., Jordan, C. J., Ciesa, B. E., Merrill, M. A. & Hanna, J. M. Seen light-promoted alkylation of imines utilizing potassium organotrifluoroborates. Photochem. Photobiol. Sci. 17, 534–538 (2018).
Cao, Ok. et al. Catalytic enantioselective addition of prochiral radicals to vinylpyridines. J. Am. Chem. Soc. 141, 5437–5443 (2019).
Li, Y. et al. Copper(II)-catalyzed uneven photoredox reactions: enantioselective alkylation of imines pushed by seen mild. J. Am. Chem. Soc. 140, 15850–15858 (2018).
Yoon, T. P., Ischay, M. A. & Du, J. Seen mild photocatalysis as a greener method to photochemical synthesis. Nat. Chem. 2, 527–532 (2010). For opinions and chosen work on photochemistry and electrochemistry, see references 37-46.
Xuan, J. & Xiao, W.-J. Seen-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).
Prier, C. Ok., Rankic, D. A. & MacMillan, D. W. C. Seen mild photoredox catalysis with transition metallic complexes: functions in natural synthesis. Chem. Rev. 113, 5322–5363 (2013).
Francke, R. & Little, R. D. Redox catalysis in natural electrosynthesis: fundamental ideas and up to date developments. Chem. Soc. Rev. 43, 2492–2521 (2014).
Romero, N. A. & Nicewicz, D. A. Natural photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).
Skubi, Ok. L., Blum, T. R. & Yoon, T. P. Twin catalysis methods in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).
Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in natural chemistry. J. Org. Chem. 81, 6898–6926 (2016).
Yan, M., Kawamata, Y. & Baran, P. S. Artificial natural electrochemical strategies since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Huang, H., Yu, C., Zhang, Y., Mariano, P. S. & Wang, W. Chemo- and regioselective organo-photoredox catalyzed hydroformylation of styrenes through a radical pathway. J. Am. Chem. Soc. 139, 9799–9802 (2017).
Zhang, S. et al. Electrochemical arylation of aldehydes, ketones, and alcohols: from cathodic discount to convergent paired electrolysis. Angew. Chem. Int. Ed. 60, 7275–7282 (2021).
Maki, B. E., Chan, A., Phillips, E. M. & Scheidt, Ok. A. Tandem oxidation of allylic and benzylic alcohols to esters catalyzed by n heterocyclic carbenes. Org. Lett. 9, 371–374 (2007).
Maki, B. E. & Scheidt, Ok. A. N-heterocyclic carbene-catalyzed oxidation of unactivated aldehydes to esters. Org. Lett. 10, 4331–4334 (2008).
Guin, J., De Sarkar, S., Grimme, S. & Studer, A. Biomimetic carbene-catalyzed oxidations of aldehydes utilizing TEMPO. Angew. Chem. Int. Ed. 47, 8727–8730 (2008).
De Sarkar, S., Grimme, S. & Studer, A. NHC catalyzed oxidations of aldehydes to esters chemoselective acylation of alcohols in presence of amines. J. Am. Chem. Soc. 132, 1190–1191 (2010).
Zhang, Y. et al. N-heterocyclic carbene-catalyzed radical reactions for extremely enantioselective β-hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).
Wu, X. et al. Polyhalides as environment friendly and delicate oxidants for oxidative carbene organocatalysis by radical processes. Angew. Chem. Int. Ed. 56, 2942–2946 (2017).
Li, B.-S. et al. Carbene-catalysed reductive coupling of Ni-Trobenzyl Bromides and Activated Ketones Or Imines By way of Single-electron-transfer Course of. Nat. Commun. 7, 12933–12940 (2016).
Zhang, Y. et al. N‑heterocyclic carbene-catalyzed radical reactions for extremely enantioselective β‑hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).
Wu, X. et al. Polyhalides as environment friendly and delicate oxidants for oxidative carbene organocatalysis by radical processes. Angew. Chem. Int. Ed. 56, 2942–2946 (2017).
White, N. A. & Rovis, T. Enantioselective N-heterocyclic carbene-catalyzed β-hydroxylation of enals utilizing nitroarenes: an atom switch response that proceeds through single electron switch. J. Am. Chem. Soc. 136, 14674–14677 (2014).
White, N. A. & Rovis, T. Oxidatively initiated NHC-catalyzed enantioselective synthesis of three,4-disubstituted cyclopentanones from enals. J. Am. Chem. Soc. 137, 10112–10115 (2015).
Yang, W., Hu, W., Dong, X., Li, X. & Solar, J. N-Heterocyclic carbene catalyzed γ-dihalomethylenation of enals by single-electron switch. Angew. Chem. Int. Ed. 55, 15783–15786 (2016).
Chen, X. Y., Chen, Ok. Q., Solar, D. Q. & Ye, S. N-Heterocyclic carbene-catalyzed oxidative [3 + 2] annulation of dioxindoles and enals: cross coupling of homoenolate and enolate. Chem. Sci. 8, 1936–1941 (2017).
Dai, L., Xia, Z. H., Gao, Y. Y., Gao, Z. H. & Ye, S. Seen-light-driven N-heterocyclic carbene catalyzed γ- and -alkylation with alkyl radicals. Angew. Chem. Int. Ed. 58, 18124–18130 (2019).
Dai, L. & Ye, S. Photograph/N-heterocyclic carbene cocatalyzed ring opening and γ-alkylation of cyclopropane enal. Org. Lett. 22, 986–990 (2020).
Han, Y.-F. et al. Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes. Nat. Commun. 13, 5754–5761 (2022).
Ishii, T., Kakeno, Y., Nagao, Ok. & Ohmiya, H. N-heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).
Ishii, T., Ota, Ok., Nagao, Ok. & Ohmiya, H. N-heterocyclic carbene-catalyzed radical relay enabling vicinal alkylacylation of alkenes. J. Am. Chem. Soc. 141, 14073–14077 (2019).
Ota, Ok., Nagao, Ok. & Ohmiya, H. N heterocyclic carbene-catalyzed radical relay enabling synthesis of delta-ketocarbonyls. Org. Lett. 22, 3922–3925 (2020).
Kakeno, Y., Kusakabe, M., Nagao, Ok. & Ohmiya, H. Direct synthesis of dialkyl ketones from aliphatic aldehydes via radical N-heterocyclic carbene catalysis. ACS Catal. 10, 8524–8529 (2020).
Zhang, B., Peng, Q., Guo, D. & Wang, J. NHC-catalyzed radical trifluoromethylation enabled by togni reagent. Org. Lett. 22, 443–447 (2020).
Du, D. et al. Bio- and medicinally appropriate α-amino- acid modification through merging photoredox and N-heterocyclic carbene catalysis. Org. Lett. 22, 6370–6375 (2020).
Kim, I., Im, H., Lee, H. & Hong, S. N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chem. Sci. 11, 3192–3197 (2020).
Li, J. L. et al. Radical acylfluoroalkylation of olefins via N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 59, 1863–1870 (2020).
Yang, H. B., Wang, Z. H., Li, J. M. & Wu, C. Modular synthesis of α-aryl β-perfluoroalkyl ketones through N-heterocyclic carbene catalysis. Chem. Commun. 56, 3801–3804 (2020).
Liu, M.-S. & Shu, W. Catalytic, metal-free amide synthesis from aldehydes and imines enabled by a dual-catalyzed umpolung technique underneath redox-neutral circumstances. ACS Catal. 10, 12960–12966 (2020).
Du, H.-W., Liu, M.-S. & Shu, W. Synthesis of β-thiolated-α-arylated ketones enabled by photoredox and N-heterocyclic carbene-catalyzed radical relay of alkenes with disulfides and aldehydes. Org. Lett. 24, 5519–5524 (2022).
Choi, H., Mathi, G. R., Hong, S. & Hong, S. Enantioselective functionalization on the C4 place of pyridinium salts via NHC catalysis. Nat. Commun. 13, 1776–1783 (2022).
Davies, A. V., Fitzpatrick, Ok. P., Betori, R. C. & Scheidt, Ok. A. Mixed photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143–9148 (2020).
Meng, Q. Y., Doben, N. & Studer, A. Cooperative NHC and photoredox catalysis for the synthesis of beta-trifluoromethylated alkyl aryl ketones. Angew. Chem. Int. Ed. 59, 19956–19960 (2020).
Wang, X., Zhu, B., Liu, Y. & Wang, Q. Mixed photoredox and carbene catalysis for the synthesis of α-amino ketones from carboxylic acids. ACS Catal. 12, 2522–2531 (2022).
Ren, S. C. et al. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to type ketones. Nat. Commun. 13, 2846–2855 (2022).
Zuo, Z., Daniliuc, C. G. & Studer, A. Cooperative NHC/Photoredox Catalyzed Ring-Opening of ArylCyclopropanes to 1-Aroyloxylated-3-Acylated Alkanes. Angew. Chem. Int. Ed. 60, 25252–25257 (2021).
Meng, Q., Lezius, L. & Studer, A. Benzylic C−H acylation by cooperative NHC and photoredox catalysis. Nat. Commun. 12, 2068–2075 (2021).
Sato, Y. et al. Gentle-driven N-heterocyclic carbene catalysis utilizing alkylborates. ACS Catal. 11, 12886–12892 (2021).
Ren, S.-C. et al. Carbene-catalyzed alkylation of carboxylic esters through direct photoexcitation of acyl azolium intermediates. ACS Catal. 11, 2925–2934 (2021).
Yu, X., Meng, Q.-Y., Daniliuc, C. G. & Studer, A. Aroyl fluorides as bifunctional reagents for dearomatizing fluoroaroylation of benzofurans. J. Am. Chem. Soc. 144, 7072–7079 (2022).
Liu, Ok., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).
Ambrosini, L. M. & Lambert, T. H. Multicatalysis: advancing artificial effectivity and galvanizing discovery. ChemCatChem 2, 1373–1380 (2010).
Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).
Liu, Ok. & Studer, A. Direct α-acylation of alkenes through N-heterocyclic carbene, sulfinate, and photoredox cooperative triple catalysis. J. Am. Chem. Soc. 143, 4903–4909 (2021).
Gooßen, L. J., Deng, G. & Levy, L. M. Synthesis of biaryls through catalytic decarboxylative coupling. Science 313, 662–664 (2006).
Gooßen, L. J. et al. New catalytic transformations of carboxylic acids. Pure Appl. Chem. 80, 1725–1733 (2008).
Vora, H. U., Wheeler, P. & Rovis, T. Exploiting acyl and enol azolium intermediates through n-hetero- cyclic carbene-catalyzed reactions of α-reducible aldehydes. Adv. Synth. Catal. 354, 1617–1639 (2012).
Wu, Y.-D., Wong, C.-L., Chan, Ok. W. Ok., Ji, G.-Z. & Jiang, X.-Ok. Substituent results on the C−H bond dissociation power of toluene. A density practical research. J. Org. Chem. 61, 746–750 (1996).
Khursan, S. L., Mikhailov, D. A., Yanborisov, V. M. & Borisov, D. I. AM1 calculations of bond dissociation energies. allylic and benzylic C-H bonds. React. Kinet. Catal. Lett. 61, 91–95 (1997).
Bordwell, F. G., Zhang, X.-M., Satish, A. V. & Cheng, J.-P. Evaluation of the significance of modifications in ground-state energies on the bond dissociation enthalpies of the O-H bonds in phenols and the S-H bonds in thiophenols. J. Am. Chem. Soc. 116, 6605–6610 (1994).
Cuthbertson, J. D. & MacMillan, D. W. C. The direct arylation of allylic sp3 C–H bonds through natural and photoredox catalysis. Nature 519, 74–77 (2015).
Chen, F. et al. Iminoxyl radical-promoted oxycyanation and aminocyanation of unactivated alkenes: synthesis of cyano-featured isoxazolines and cyclic nitrones. Org. Lett. 19, 3255–3258 (2017).
Zhu, M.-Ok., Zhao, J.-F. & Loh, T.-P. Palladium-catalyzed oxime assisted intramolecular dioxygenation of alkenes with 1 atm of air as the only real oxidant. J. Am. Chem. Soc. 132, 6284–6285 (2010).
Han, B. et al. Oxime radical promoted dioxygenation, oxyamination, and diamination of alkenes: synthesis of isoxazolines and cyclic nitrones. Angew. Chem., Int. Ed. 51, 8816–8820 (2012).
Yang, X.-L., Chen, F., Zhou, N.-N., Yu, W. & Han, B. Synthesis of isoxazoline-functionalized phenanthridines through iminoxyl radical-participated cascade sequence. Org. Lett. 16, 6476–6479 (2014).
Li, Z., Qian, L., Chen, H. & Xu, X. Era of iminoxyl radicals by photoredox catalysis permits oxidant-free hydroxygenation of β,γ-unsaturated oximes. Synlett 33, 293–295 (2022).
Hu, X.-Q., Chen, J., Chen, J.-R., Yan, D.-M. & Xiao, W.-J. Organophotocatalytic technology of N- and O-centred radicals permits cardio oxyamination and dioxygenation of alkenes. Chem. Eur. J. 22, 14141–14146 (2016).