google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
14.3 C
New York
Monday, June 5, 2023

Direct allylic acylation through cross-coupling involving cooperative N‑heterocyclic carbene, hydrogen atom switch, and photoredox catalysis


  • Fu, C. et al. The pure product carolacton inhibits folate-dependent C1 metabolism by focusing on fold/MTHFD. Nat. Commun. 8, 1529–1537 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Asaba, T., Katoh, Y., Urabe, D. & Inoue, M. Complete synthesis of crotophorbolone. Angew. Chem. Int. Ed. 54, 14457–14461 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Irschik, H. et al. Isolation, construction elucidation, and organic exercise of maltepolides: exceptional macrolides from myxobacteria. Angew. Chem. Int. Ed. 52, 5402–5405 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Davies, S. S., Amarnath, V., Brame, C. J., Boutaud, O. & Roberts, L. N. Measurement of power oxidative and inflammatory stress by quantification of isoketal/levuglandin γ-ketoaldehyde protein adducts utilizing liquid chromatography tandem mass spectrometry. Nat. Protoc. 2, 2079–2091 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S., Duan, W. & Wang, W. Environment friendly, enantioselective organocatalytic synthesis of Trichostatin A. Adv. Synth. Catal. 348, 1228–1234 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Radin, N. S. Drug design: hiding in full view. Drug Dev. Res. 69, 15–25 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Y. et al. Palladium-catalysed mono-α-alkenylation of ketones with alkenyl tosylates. Chem. Commun. 53, 952–955 (2017). For latest examples, see references 7-12.

    Article 
    CAS 

    Google Scholar
     

  • Huang, Y., Huang, R. & Zhao, Y. Cobalt-catalyzed enantioselective vinylation of activated ketones and imines. J. Am. Chem. Soc. 138, 6571–6576 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, J. et al. Nickel (II)-catalyzed enantioselective α-vinylation of β-keto amides/esters with hypervalent iodine salts. Org. Lett. 18, 5540–5543 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grigalunas, M., Ankner, T., Norrby, P., Wiest, O. & Helquist, P. Palladium-catalyzed alkenylation of ketone enolates underneath delicate circumstances. Org. Lett. 16, 3970–3973 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ankner, T., Cosner, C. C. & Helquist, P. Palladium- and nickel-catalyzed alkenylation of enolates. Chem.—Eur. J. 19, 1858–1871 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ooi, T., Goto, R. & Maruoka, Ok. Fluorotetraphenylbismuth: a brand new reagent for environment friendly regioselective α-phenylation of carbonyl compounds. J. Am. Chem. Soc. 125, 10494–10495 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohnishi, N., Yasuda, S., Nagao, Ok. & Ohmiya, H. Synergistic N-heterocyclic carbene/palladium-catalyzed aldehyde acylation of allylic amines. Asian J. Org. Chem. 8, 1133–1135 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Haruki, H., Yasuda, S., Nagao, Ok. & Ohmiya, H. Dehydrative allylation between aldehydes and allylic alcohols via synergistic N-heterocyclic carbene/palladium catalysis. Chem. -Eur. J. 25, 724–727 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trongsiriwat, N., Li, M., Pascual-Escudero, A., Yucel, B. & Walsh, P. J. Palladium-catalyzed allylic alkylation of 2-aryl-1,3-dithianes, an umpolung synthesis of β,γ-unsaturated ketones. Adv. Synth. Catal. 361, 502–509 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Medina, J. M., Moreno, J., Racine, S., Du, S. & Garg, N. Ok. Mizoroki-heck cyclizations of amide derivatives for the introduction of quaternary facilities. Angew. Chem. Int. Ed. 56, 6567–6571 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yao, Ok. et al. 1,3-dithianes as acyl anion equivalents in Pd-catalyzed uneven allylic substitution. Org. Lett. 18, 6296–6299 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Poulsen, T. B., Bernardi, L., Bell, M. & Jørgensen, Ok. A. Organocatalytic enantioselective nucleophilic vinylic substitution. Angew. Chem. Int. Ed. 45, 6551–6554 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Chieffi, A., Kamikawa, Ok., Ahman, J., Fox, J. M. & Buchwald, S. L. Catalytic uneven vinylation of ketone enolates. Org. Lett. 3, 1897–1900 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grigalunas, M., Ankner, T., Norrby, P., Wiest, O. & Helquist, P. Ni-catalyzed alkenylation of ketone enolates underneath delicate circumstances: catalyst identification and optimization. J. Am. Chem. Soc. 137, 7019–7022 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lou, S. & Fu, G. C. Enantioselective alkenylation through nickel-catalyzed cross-coupling with organozirconium reagents. J. Am. Chem. Soc. 132, 5010–5011 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stevens, J. M. & MacMillan, D. W. C. Enantioselective α-alkenylation of aldehydes with boronic acids through the synergistic mixture of copper(II) and amine catalysis. J. Am. Chem. Soc. 135, 11756–11759 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skucas, E. & MacMillan, D. W. C. Enantioselective α-vinylation of aldehydes through the synergistic mixture of copper and amine catalysis. J. Am. Chem. Soc. 134, 9090–9093 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, H. & MacMillan, D. W. C. Enantioselective organo-SOMO catalysis: the α-vinylation of aldehydes. J. Am. Chem. Soc. 130, 398–399 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. Cooperative N-heterocyclic carbene/nickel-catalyzed hydroacylation of 1,3-dienes with aldehydes in water. ACS Catal. 12, 1657–1663 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Yuan, Y., Zhang, X., Qian, H. & Ma, S. Catalytic enantioselective allene–anhydride method to β,γ-unsaturated enones bearing an α-all-carbon-quaternary heart. Chem. Sci. 11, 9115–9121 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An outline of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, C., Hooper, J. F. & Lupton, D. W. N-heterocyclic carbene catalysis through the α,β-unsaturated acyl azolium. ACS Catal. 7, 2583–2596 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Patel, N. R., Kelly, C. B., Siegenfeld, A. P. & Molander, G. A. Delicate, redox-neutral alkylation of imines enabled by an natural photocatalyst. ACS Catal. 7, 1766–1770 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jia, J., Lefebvre, Q. & Rueping, M. Reductive coupling of imines with redox-active esters by seen mild photoredox organocatalysis. Org. Chem. Entrance. 7, 602–608 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ji, P. et al. Seen-light-mediated, chemo- and stereoselective radical course of for the synthesis of C‑glycoamino acids. Org. Lett. 21, 3086–3092 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, H.-H. & Yu, S. Radical alkylation of imines with 4‑alkyl-1,4-dihydropyridines enabled by photoredox/brønsted acid cocatalysis. J. Org. Chem. 82, 9995–10006 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plasko, D. P., Jordan, C. J., Ciesa, B. E., Merrill, M. A. & Hanna, J. M. Seen light-promoted alkylation of imines utilizing potassium organotrifluoroborates. Photochem. Photobiol. Sci. 17, 534–538 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, Ok. et al. Catalytic enantioselective addition of prochiral radicals to vinylpyridines. J. Am. Chem. Soc. 141, 5437–5443 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Y. et al. Copper(II)-catalyzed uneven photoredox reactions: enantioselective alkylation of imines pushed by seen mild. J. Am. Chem. Soc. 140, 15850–15858 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoon, T. P., Ischay, M. A. & Du, J. Seen mild photocatalysis as a greener method to photochemical synthesis. Nat. Chem. 2, 527–532 (2010). For opinions and chosen work on photochemistry and electrochemistry, see references 37-46.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xuan, J. & Xiao, W.-J. Seen-light photoredox catalysis. Angew. Chem. Int. Ed. 51, 6828–6838 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Prier, C. Ok., Rankic, D. A. & MacMillan, D. W. C. Seen mild photoredox catalysis with transition metallic complexes: functions in natural synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Francke, R. & Little, R. D. Redox catalysis in natural electrosynthesis: fundamental ideas and up to date developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Romero, N. A. & Nicewicz, D. A. Natural photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Skubi, Ok. L., Blum, T. R. & Yoon, T. P. Twin catalysis methods in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in natural chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yan, M., Kawamata, Y. & Baran, P. S. Artificial natural electrochemical strategies since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, H., Yu, C., Zhang, Y., Mariano, P. S. & Wang, W. Chemo- and regioselective organo-photoredox catalyzed hydroformylation of styrenes through a radical pathway. J. Am. Chem. Soc. 139, 9799–9802 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. et al. Electrochemical arylation of aldehydes, ketones, and alcohols: from cathodic discount to convergent paired electrolysis. Angew. Chem. Int. Ed. 60, 7275–7282 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maki, B. E., Chan, A., Phillips, E. M. & Scheidt, Ok. A. Tandem oxidation of allylic and benzylic alcohols to esters catalyzed by n heterocyclic carbenes. Org. Lett. 9, 371–374 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maki, B. E. & Scheidt, Ok. A. N-heterocyclic carbene-catalyzed oxidation of unactivated aldehydes to esters. Org. Lett. 10, 4331–4334 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Guin, J., De Sarkar, S., Grimme, S. & Studer, A. Biomimetic carbene-catalyzed oxidations of aldehydes utilizing TEMPO. Angew. Chem. Int. Ed. 47, 8727–8730 (2008).

    Article 
    CAS 

    Google Scholar
     

  • De Sarkar, S., Grimme, S. & Studer, A. NHC catalyzed oxidations of aldehydes to esters chemoselective acylation of alcohols in presence of amines. J. Am. Chem. Soc. 132, 1190–1191 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Zhang, Y. et al. N-heterocyclic carbene-catalyzed radical reactions for extremely enantioselective β-hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Polyhalides as environment friendly and delicate oxidants for oxidative carbene organocatalysis by radical processes. Angew. Chem. Int. Ed. 56, 2942–2946 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, B.-S. et al. Carbene-catalysed reductive coupling of Ni-Trobenzyl Bromides and Activated Ketones Or Imines By way of Single-electron-transfer Course of. Nat. Commun. 7, 12933–12940 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, Y. et al. N‑heterocyclic carbene-catalyzed radical reactions for extremely enantioselective β‑hydroxylation of enals. J. Am. Chem. Soc. 137, 2416–2419 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, X. et al. Polyhalides as environment friendly and delicate oxidants for oxidative carbene organocatalysis by radical processes. Angew. Chem. Int. Ed. 56, 2942–2946 (2017).

    Article 
    CAS 

    Google Scholar
     

  • White, N. A. & Rovis, T. Enantioselective N-heterocyclic carbene-catalyzed β-hydroxylation of enals utilizing nitroarenes: an atom switch response that proceeds through single electron switch. J. Am. Chem. Soc. 136, 14674–14677 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • White, N. A. & Rovis, T. Oxidatively initiated NHC-catalyzed enantioselective synthesis of three,4-disubstituted cyclopentanones from enals. J. Am. Chem. Soc. 137, 10112–10115 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, W., Hu, W., Dong, X., Li, X. & Solar, J. N-Heterocyclic carbene catalyzed γ-dihalomethylenation of enals by single-electron switch. Angew. Chem. Int. Ed. 55, 15783–15786 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X. Y., Chen, Ok. Q., Solar, D. Q. & Ye, S. N-Heterocyclic carbene-catalyzed oxidative [3 + 2] annulation of dioxindoles and enals: cross coupling of homoenolate and enolate. Chem. Sci. 8, 1936–1941 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dai, L., Xia, Z. H., Gao, Y. Y., Gao, Z. H. & Ye, S. Seen-light-driven N-heterocyclic carbene catalyzed γ- and -alkylation with alkyl radicals. Angew. Chem. Int. Ed. 58, 18124–18130 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dai, L. & Ye, S. Photograph/N-heterocyclic carbene cocatalyzed ring opening and γ-alkylation of cyclopropane enal. Org. Lett. 22, 986–990 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Y.-F. et al. Photoredox cooperative N-heterocyclic carbene/palladium-catalysed alkylacylation of alkenes. Nat. Commun. 13, 5754–5761 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ishii, T., Kakeno, Y., Nagao, Ok. & Ohmiya, H. N-heterocyclic carbene-catalyzed decarboxylative alkylation of aldehydes. J. Am. Chem. Soc. 141, 3854–3858 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ishii, T., Ota, Ok., Nagao, Ok. & Ohmiya, H. N-heterocyclic carbene-catalyzed radical relay enabling vicinal alkylacylation of alkenes. J. Am. Chem. Soc. 141, 14073–14077 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ota, Ok., Nagao, Ok. & Ohmiya, H. N heterocyclic carbene-catalyzed radical relay enabling synthesis of delta-ketocarbonyls. Org. Lett. 22, 3922–3925 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakeno, Y., Kusakabe, M., Nagao, Ok. & Ohmiya, H. Direct synthesis of dialkyl ketones from aliphatic aldehydes via radical N-heterocyclic carbene catalysis. ACS Catal. 10, 8524–8529 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, B., Peng, Q., Guo, D. & Wang, J. NHC-catalyzed radical trifluoromethylation enabled by togni reagent. Org. Lett. 22, 443–447 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, D. et al. Bio- and medicinally appropriate α-amino- acid modification through merging photoredox and N-heterocyclic carbene catalysis. Org. Lett. 22, 6370–6375 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, I., Im, H., Lee, H. & Hong, S. N-Heterocyclic carbene-catalyzed deaminative cross-coupling of aldehydes with Katritzky pyridinium salts. Chem. Sci. 11, 3192–3197 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, J. L. et al. Radical acylfluoroalkylation of olefins via N-heterocyclic carbene organocatalysis. Angew. Chem. Int. Ed. 59, 1863–1870 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yang, H. B., Wang, Z. H., Li, J. M. & Wu, C. Modular synthesis of α-aryl β-perfluoroalkyl ketones through N-heterocyclic carbene catalysis. Chem. Commun. 56, 3801–3804 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, M.-S. & Shu, W. Catalytic, metal-free amide synthesis from aldehydes and imines enabled by a dual-catalyzed umpolung technique underneath redox-neutral circumstances. ACS Catal. 10, 12960–12966 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Du, H.-W., Liu, M.-S. & Shu, W. Synthesis of β-thiolated-α-arylated ketones enabled by photoredox and N-heterocyclic carbene-catalyzed radical relay of alkenes with disulfides and aldehydes. Org. Lett. 24, 5519–5524 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Choi, H., Mathi, G. R., Hong, S. & Hong, S. Enantioselective functionalization on the C4 place of pyridinium salts via NHC catalysis. Nat. Commun. 13, 1776–1783 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Davies, A. V., Fitzpatrick, Ok. P., Betori, R. C. & Scheidt, Ok. A. Mixed photoredox and carbene catalysis for the synthesis of ketones from carboxylic acids. Angew. Chem. Int. Ed. 59, 9143–9148 (2020).

    Article 

    Google Scholar
     

  • Meng, Q. Y., Doben, N. & Studer, A. Cooperative NHC and photoredox catalysis for the synthesis of beta-trifluoromethylated alkyl aryl ketones. Angew. Chem. Int. Ed. 59, 19956–19960 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X., Zhu, B., Liu, Y. & Wang, Q. Mixed photoredox and carbene catalysis for the synthesis of α-amino ketones from carboxylic acids. ACS Catal. 12, 2522–2531 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ren, S. C. et al. Carbene and photocatalyst-catalyzed decarboxylative radical coupling of carboxylic acids and acyl imidazoles to type ketones. Nat. Commun. 13, 2846–2855 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zuo, Z., Daniliuc, C. G. & Studer, A. Cooperative NHC/Photoredox Catalyzed Ring-Opening of ArylCyclopropanes to 1-Aroyloxylated-3-Acylated Alkanes. Angew. Chem. Int. Ed. 60, 25252–25257 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Meng, Q., Lezius, L. & Studer, A. Benzylic C−H acylation by cooperative NHC and photoredox catalysis. Nat. Commun. 12, 2068–2075 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sato, Y. et al. Gentle-driven N-heterocyclic carbene catalysis utilizing alkylborates. ACS Catal. 11, 12886–12892 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ren, S.-C. et al. Carbene-catalyzed alkylation of carboxylic esters through direct photoexcitation of acyl azolium intermediates. ACS Catal. 11, 2925–2934 (2021).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Yu, X., Meng, Q.-Y., Daniliuc, C. G. & Studer, A. Aroyl fluorides as bifunctional reagents for dearomatizing fluoroaroylation of benzofurans. J. Am. Chem. Soc. 144, 7072–7079 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Ok., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ambrosini, L. M. & Lambert, T. H. Multicatalysis: advancing artificial effectivity and galvanizing discovery. ChemCatChem 2, 1373–1380 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Lohr, T. L. & Marks, T. J. Orthogonal tandem catalysis. Nat. Chem. 7, 477–482 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Ok. & Studer, A. Direct α-acylation of alkenes through N-heterocyclic carbene, sulfinate, and photoredox cooperative triple catalysis. J. Am. Chem. Soc. 143, 4903–4909 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gooßen, L. J., Deng, G. & Levy, L. M. Synthesis of biaryls through catalytic decarboxylative coupling. Science 313, 662–664 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gooßen, L. J. et al. New catalytic transformations of carboxylic acids. Pure Appl. Chem. 80, 1725–1733 (2008).

    Article 

    Google Scholar
     

  • Vora, H. U., Wheeler, P. & Rovis, T. Exploiting acyl and enol azolium intermediates through n-hetero- cyclic carbene-catalyzed reactions of α-reducible aldehydes. Adv. Synth. Catal. 354, 1617–1639 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y.-D., Wong, C.-L., Chan, Ok. W. Ok., Ji, G.-Z. & Jiang, X.-Ok. Substituent results on the C−H bond dissociation power of toluene. A density practical research. J. Org. Chem. 61, 746–750 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Khursan, S. L., Mikhailov, D. A., Yanborisov, V. M. & Borisov, D. I. AM1 calculations of bond dissociation energies. allylic and benzylic C-H bonds. React. Kinet. Catal. Lett. 61, 91–95 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Bordwell, F. G., Zhang, X.-M., Satish, A. V. & Cheng, J.-P. Evaluation of the significance of modifications in ground-state energies on the bond dissociation enthalpies of the O-H bonds in phenols and the S-H bonds in thiophenols. J. Am. Chem. Soc. 116, 6605–6610 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Cuthbertson, J. D. & MacMillan, D. W. C. The direct arylation of allylic sp3 C–H bonds through natural and photoredox catalysis. Nature 519, 74–77 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, F. et al. Iminoxyl radical-promoted oxycyanation and aminocyanation of unactivated alkenes: synthesis of cyano-featured isoxazolines and cyclic nitrones. Org. Lett. 19, 3255–3258 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, M.-Ok., Zhao, J.-F. & Loh, T.-P. Palladium-catalyzed oxime assisted intramolecular dioxygenation of alkenes with 1 atm of air as the only real oxidant. J. Am. Chem. Soc. 132, 6284–6285 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, B. et al. Oxime radical promoted dioxygenation, oxyamination, and diamination of alkenes: synthesis of isoxazolines and cyclic nitrones. Angew. Chem., Int. Ed. 51, 8816–8820 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X.-L., Chen, F., Zhou, N.-N., Yu, W. & Han, B. Synthesis of isoxazoline-functionalized phenanthridines through iminoxyl radical-participated cascade sequence. Org. Lett. 16, 6476–6479 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z., Qian, L., Chen, H. & Xu, X. Era of iminoxyl radicals by photoredox catalysis permits oxidant-free hydroxygenation of β,γ-unsaturated oximes. Synlett 33, 293–295 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hu, X.-Q., Chen, J., Chen, J.-R., Yan, D.-M. & Xiao, W.-J. Organophotocatalytic technology of N- and O-centred radicals permits cardio oxyamination and dioxygenation of alkenes. Chem. Eur. J. 22, 14141–14146 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles