12.2 C
New York
Monday, March 27, 2023

Direct construction willpower of vemurafenib polymorphism from compact spherulites utilizing 3D electron diffraction


  • Shtukenberg, A. G., Punin, Y. O., Gunn, E. & Kahr, B. Spherulites. Chem. Rev. 112, 1805–1838 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. G., Freudenthal, J. & Kahr, B. Reversible twisting throughout helical hippuric acid crystal progress. J. Am. Chem. Soc. 132, 9341–9349 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. G., Zhu, X., Yang, Y. & Kahr, B. Widespread incidence of twisted molecular crystal morphologies from the soften. Cryst. Development Des. 20, 6186–6197 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Woo, E. M. & Lugito, G. Origins of periodic bands in polymer spherulites. Eur. Polym. J. 71, 27–60 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Kofler, L. & Kofler, A. Thermo-mikro-methoden zur kennzeichnung organischer stoffe und stoffgemische (Verlag Chemie, 1954).

  • Carr, S. M. & Subramanian, Okay. N. Spherulitic crystal progress in P2O5-nucleated lead silicate glasses. J. Cryst. Development 60, 307–312 (1982).

    Article 
    CAS 

    Google Scholar
     

  • Prymak, O., Sokolova, V., Peitsch, T. & Epple, M. The crystallization of fluoroapatite dumbbells from supersaturated aqueous resolution. Cryst. Development Des. 6, 498–506 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Matsuno, T. Spherulitic crystal progress of CaSO3·0.5H2O in gel. J. Cryst. Development 71, 263–268 (1985).

    Article 
    CAS 

    Google Scholar
     

  • Ryschenkow, G. & Faivre, G. Bulk crystallization of liquid selenium Major nucleation, progress kinetics and modes of crystallization. J. Cryst. Development 87, 221–235 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Fowler, A. D., Berger, B. R., Shore, M. S., Jones, M. I. & Ropchan, J. R. Supercooled rocks: growth and significance of varioles, spherulites, dendrites and spinifex in Archaean volcanic rocks, Abitibi Greenstone belt, Canada. Precambrian Res. 115, 311–328 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Oaki, Y. & Imai, H. Amplification of chirality from molecules into morphology of crystals via molecular recognition. J. Am. Chem. Soc. 126, 9271–9275 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. et al. Bernauer’s bands. ChemPhysChem 12, 1558–1571 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hobbs, S. Y. Polymer microscopy. J. Macromol. Sci. C 19, 221–265 (2007).

    Article 

    Google Scholar
     

  • Coleman, J. E., Allan, B. J. & Vallee, B. L. Protein spherulites. Science 131, 350–352 (1960).

    Article 
    CAS 

    Google Scholar
     

  • Krebs, M. R. et al. The formation of spherulites by amyloid fibrils of bovine insulin. Proc. Natl Acad. Sci. USA 101, 14420–14424 (2004).

    Article 
    CAS 

    Google Scholar
     

  • El-Sayed, Okay. & Cosslett, V. E. Investigation of the microstructure of kidney stones (oxalate sort) by excessive voltage electron microscopy and electron diffraction. Experientia 33, 919–921 (1977).

    Article 
    CAS 

    Google Scholar
     

  • Fiechtner, J. J. & Simkin, P. A. Urate Spherulites in Gouty Synovia. JAMA 245, 1533–1536 (1981).

    Article 
    CAS 

    Google Scholar
     

  • Catalina, F. & Cifuentes, L. Calcium oxalate: crystallographic evaluation in stable aggregates in urinary sediments. Science 169, 183–184 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Manuelidis, L., Fritch, W. & Xi, Y. G. Evolution of a pressure of CJD that induces BSE-like plaques. Science 277, 94–98 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y., Xu, J., Shi, Q., Yu, L. & Cai, T. Polymorphism of griseofulvin: concomitant crystallization from the soften and a single crystal construction of a metastable polymorph with anomalously giant thermal enlargement. Chem. Commun. 54, 358–361 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. Wealthy polymorphism in nicotinamide revealed by soften crystallization and crystal construction prediction. Commun. Chem. 3, 152 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, X. et al. Imidacloprid crystal polymorphs for illness vector management and pollinator safety. J. Am. Chem. Soc. 143, 17144–17152 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Okay. et al. Discovery of latest polymorphs of the tuberculosis drug isoniazid. CrystEngComm 22, 2705–2708 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yao, C. et al. Polymorphism of piroxicam: new polymorphs by soften crystallization and crystal construction prediction. Cryst. Development Des. 20, 7874–7881 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. G. et al. Soften crystallization for paracetamol polymorphism. Cryst. Development Des. 19, 4070–4080 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. G. et al. The third ambient aspirin polymorph. Cryst. Development Des. 17, 3562–3566 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Mahieu, A. et al. On the polymorphism of griseofulvin: identification of two extra polymorphs. J. Pharm. Sci. 102, 462–468 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fellah, N. et al. Disorderly conduct of benzamide iv: crystallographic and computational evaluation of excessive entropy polymorphs of small molecules. Cryst. Development Des. 20, 2670–2682 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shtukenberg, A. G. et al. Powder diffraction and crystal construction prediction determine 4 new coumarin polymorphs. Chem. Sci. 8, 4926–4940 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Yang, J. et al. A deltamethrin crystal polymorph for more practical malaria management. Proc. Natl Acad. Sci. USA 117, 26633–26638 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chen, S., Xi, H. & Yu, L. Cross-Nucleation between ROY Polymorphs. J. Am. Chem. Soc. 127, 17439–17444 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ou, X. et al. Polymorphism in griseofulvin: new story between an outdated drug and polyethylene glycol. Cryst. Development Des. 6, 3378–3785 (2022).


    Google Scholar
     

  • Lu, M. & Taylor, L. S. Vemurafenib: a tetramorphic system displaying concomitant crystallization from the supercooled liquid. Cryst. Development Des. 16, 6033–6042 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lightowler, M. et al. Indomethacin polymorph δ revealed to be two plastically bendable crystal types by 3d electron diffraction: correcting a 47-year-old misunderstanding. Angew. Chem. Int. Ed. 61, e202114985 (2022).

    CAS 

    Google Scholar
     

  • Kuhnert-Brandstätter, M. Thermomicroscopy within the Evaluation of Pharmaceutical Crystals (Pergamon Press, 1971).

  • Fellah, N. et al. Extremely polymorphous nicotinamide and isonicotinamide: resolution versus soften crystallization. Cryst. Development Des. 21, 4713–4724 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Naito, Okay. Quantitative relations between glass transition temperatures and thermodynamic parameters for numerous supplies: molecular design for nonpolymeric natural dye glasses with thermal stability. Chem. Mater. 6, 2343–2350 (2002).

    Article 

    Google Scholar
     

  • Shtukenberg, A., Freundenthal, J., Gunn, E., Yu, L. & Kahr, B. Glass-crystal progress mode for testosterone propionate. Cryst. Development Des. 11, 4458–4462 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Harris, Okay. D. M. Powder diffraction crystallography of molecular s]olids. Prime. Curr. Chem. 315, 133–178 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ou, X., Li, X., Rong, H., Yu, L. & Lu, M. A common technique for cultivating single crystals from soften microdroplets. Chem. Commun. 56, 9950–9953 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, X. et al. The twelfth solved construction of ROY: single crystals of Y04 grown from soften microdroplets. Cryst. Development Des. 20, 7093–7097 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gui, Y. et al. A mechanism for reversible solid-state transitions involving nitro torsion. Chem. Mater. 32, 7754–7765 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zhu, W. R. et al. Organocatalytic enantioselective SN1-type dehydrative nucleophilic substitution: entry to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem. Sci. 13, 170–177 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bollag, G. et al. Scientific efficacy of a RAF inhibitor wants broad goal blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Bollag, G. et al. Vemurafenib: the primary drug permitted for BRAF-mutant most cancers. Nat. Rev. Drug Discov. 11, 873–886 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Genderen, E. V. et al. Ab initio construction willpower of nanocrystals of natural pharmaceutical compounds by electron diffraction at room temperature utilizing a Timepix quantum space direct electron detector. Acta Crystallogr. Sect. A: Discovered. Crystallogr. 72, 236–242 (2016).

    Article 

    Google Scholar
     

  • Gruene, T. et al. Speedy construction willpower of microcrystalline molecular compounds utilizing electron diffraction. Angew. Chem., Int. Ed. 57, 16313–16317 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jones, C. G. et al. The CryoEM technique MicroED as a robust software for small molecule construction willpower. Acs. Cent. Sci. 4, 1587–1592 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Das, P. P. et al. Crystal buildings of two essential prescribed drugs solved by 3D precession electron diffractiontomography. Org. Course of Res. Dev. 22, 1365–1372 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Andrusenko, I. et al. The crystal construction of orthocetamol solved by 3D electron diffraction. Angew. Chem. Int. Ed. 58, 10919–10922 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Clabbers, M. T. B., Gruene, T., van Genderen, E. & Abrahams, J. P. Decreasing dynamical electron scattering reveals hydrogen atoms. Acta Crystallogr., Sect. A: Discovered. Crystallogr. 75, 82–93 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Broadhurst, E. T. et al. Polymorph evolution throughout crystal progress studied by 3D electron diffraction. IUCrJ 7, 5–9 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Woollam, G. R., Das, P. P., Mugnaioli, E., Andrusenko, I. & Galanis, A. S. Structural evaluation of metastable pharmaceutical loratadine type II, by 3D electron diffraction and DFT+D power minimisation. CrystEngComm 22, 7490–7499 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andrusenko, I., Potticary, J., Corridor, S. R. & Gemmi, M. A brand new olanzapine cocrystal obtained from unstable deep eutectic solvents and decided by 3D electron diffraction. Acta Crystallogr., Sect. B 76, 1036–1044 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Andrusenko, I. et al. Construction willpower, thermal stability, and dissolution price of δ-indomethacin. Int. J. Pharm. 608, 121067 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Broadhurst, E. T., Xu, H., Parsons, S. & Nudelman, F. Revealing the early levels of carbamazepine crystallization by cryoTEM and 3D electron diffraction. IUCrJ 8, 860–866 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Smalley, C. J. H. et al. A construction willpower protocol primarily based on mixed evaluation of 3D-ED knowledge, powder XRD knowledge, solid-state NMR knowledge, and DFT-D calculations reveals the construction of a brand new polymorph of L-tyrosine. Chem. Sci. 13, 5277–5288 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Henderson, R. The potential and limitations of neutrons, electrons, and X-rays for atomic decision microscopy of unstained organic molecules. Q. Rev. Biophys. 28, 171–193 (2021).

    Article 

    Google Scholar
     

  • Wang, Y. et al. Elucidation of the elusive construction and system of the lively pharmaceutical ingredient bismuth subgallate by steady rotation electron diffraction. Chem. Commun. 53, 7018–7021 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nannenga, B. L., Shi, D., Leslie, A. G. W. & Gonen, T. Excessive-resolution construction willpower by continuous-rotation knowledge assortment in MicroED. Nat. Strategies 11, 927–930 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Xu, H. et al. A uncommon lysozyme crystal type solved utilizing extremely redundant a number of electron diffraction datasets from micron-sized crystals. Construction 26, 667–675.e663 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Mugnaioli, E. et al. Electron diffraction on flash-frozen cowlesite reveals the construction of the primary two-dimensional pure zeolite. Acs. Cent. Sci. 6, 1578–1586 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. Foundations and advances SHELXT-Built-in space-group and crystal-structure willpower. Acta Crystallogr., Sect. A: Discovered. Crystallogr. 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Crystallogr. Sect. C: Struct. Chem. 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • Gemmi, M. et al. 3D electron diffraction: The nanocrystallography revolution. Acs. Cent. Sci. 5, 1315–1329 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Klar, P. et al. Chirality and correct construction fashions by exploiting dynamical results in continuous-rotation 3D ED knowledge. ChemRxiv https://doi.org/10.26434/chemrxiv-2021-4jh14 (2021).

  • Palatinus, L. et al. Hydrogen positions in single nanocrystals revealed by electron diffraction. Science 355, 166–169 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Brázda, P., Palatinus, L. & Babor, M. Electron diffraction determines molecular absolute configuration in a pharmaceutical nanocrystal. Science 364, 667–669 (2019).

    Article 

    Google Scholar
     

  • Burla, M. C. et al. Crystal construction willpower and refinement by way of SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Van Duong, T. et al. Polymorphism of indomethacin in semicrystalline dispersions: formation, transformation, and segregation. Mol. Pharm. 15, 1037–1051 (2018).

    Article 

    Google Scholar
     

  • Zhong, Z., Guo, C., Chen, L., Xu, J. & Huang, Y. Co-crystal formation between poly(ethylene glycol) and a small molecular drug griseofulvin. Chem. Commun. 50, 6375–6378 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Rigaku Company. Rigaku Oxford Diffraction, CrysAlisPro Software program system model 171.40.39 (Rigaku Company, 2018).

  • Gemmi, M., La Placa, M. G., Galanis, A. S., Rauch, E. F. & Nicolopoulos, S. Quick electron diffraction tomography. J. Appl. Crystallogr. 48, 718–727 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Nederlof, I., Genderen, E. V., Li, Y. W. & Abrahams, J. P. A Medipix quantum space detector permits rotation electron diffraction knowledge assortment from submicrometre three-dimensional protein crystals. Acta Crystallogr. Sect. D: Biol. Crystallogr. 69, 1223–1230 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. C., Yang, T. M., Xu, H. Y., Zou, X. D. & Wan, W. On the standard of the continual rotation electron diffraction knowledge for correct atomic construction willpower of inorganic compounds. J. Appl. Crystallogr. 51, 1094–1101 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Cichocka, M. O., ngstrm, J., Wang, B., Zou, X. & Smeets, S. Excessive-throughput steady rotation electron diffraction knowledge acquisition by way of software program automation. J. Appl. Crystallogr. 51, 1652–1661 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wan, W., Solar, J., Su, J., Hovmller, S. & Zou, X. Three-dimensional rotation electron diffraction: software program RED for automated knowledge assortment and knowledge processing. J. Appl. Crystallogr. 46, 1863–1873 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Kabsch, W. Xds. Acta Crystallogr. Sect. D: Biol. Crystallogr. 66, 125–132 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Coelho, A. A. TOPAS and TOPAS-Educational: an optimization program integrating pc algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 51, 210–218 (2018).

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density purposeful for common geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Berland, Okay., Borck, Ø. & Hyldgaard, P. Van der Waals density purposeful calculations of binding in molecular crystals. Comput. Phys. Commun. 182, 1800–1804 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Davis, D., Ridvan, L., Klvana, R. & Dammer, O. Crystalline types of vemurafenib. U.S. Patent WO2015078424A1 (2015).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles