Schäfer, H. J. Contributions of natural electrosynthesis to inexperienced chemistry. C. R. Chim. 14, 745–765 (2011).
Francke, R. & Little, R. D. Redox catalysis in natural electrosynthesis: primary rules and up to date developments. Chem. Soc. Rev. 43, 2492–2521 (2014).
Ogawa, Ok. A. & Boydston, A. J. Current developments in organocatalyzed electroorganic chemistry. Chem. Lett. 44, 10–16 (2014).
Yan, M., Kawamata, Y. & Baran, P. S. Artificial natural electrochemical strategies since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).
Kärkäs, M. D. Electrochemical methods for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).
Wiebe, A. et al. Electrifying natural synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).
Yoshida, J.-i, Shimizu, A. & Hayashi, R. Electrogenerated cationic reactive intermediates: the pool technique and additional advances. Chem. Rev. 118, 4702–4730 (2018).
Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Current advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution by way of photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).
Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).
Jing, Q. & Moeller, Ok. D. From molecules to molecular surfaces. Exploiting the interaction between natural synthesis and electrochemistry. Acc. Chem. Res. 53, 135–143 (2020).
Yamamoto, Ok., Kuriyama, M. & Onomura, O. Anodic oxidation for the stereoselective synthesis of heterocycles. Acc. Chem. Res. 53, 105–120 (2020).
Novaes, L. F. T. et al. Electrocatalysis as an enabling expertise for natural synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).
Ackermann, L. Science of Synthesis: Electrochemistry in Natural Synthesis (Thieme, 2021).
Tay, N. E. S., Lehnherr, D. & Rovis, T. Photons or electrons? A vital comparability of electrochemistry and photoredox catalysis for natural synthesis. Chem. Rev. 122, 2487–2649 (2022).
Jacobsen, E. J., Pfaltz, A. & Yamamoto, H. Complete Uneven Catalysis I–III (Springer, 1999).
Carreira, E. M. & Yamamoto, H. Complete Chirality, 1st Version (Elsevier Science, 2012).
Wattanakit, C. Chiral metals as electrodes. Curr. Opin. Electrochem. 7, 54–60 (2018).
Grecchi, S., Arnaboldi, S., Rizzo, S. & Mussini, P. R. Superior chiral molecular media for enantioselective electrochemistry and electroanalysis. Curr. Opin. Electrochem. 30, 100810 (2021).
Ghosh, M., Shinde, V. S. & Rueping, M. A overview of uneven artificial natural electrochemistry and electrocatalysis: ideas, functions, current developments and future instructions. Beilstein. J. Org. Chem. 15, 2710–2746 (2019).
Lin, Q., Li, L. & Luo, S. Uneven electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).
Chang, X., Zhang, Q. & Guo, C. Uneven electrochemical transformations. Angew. Chem. Int. Ed. 59, 12612–12622 (2020).
Wang, X. Y., Xu, X. T., Wang, Z. H., Fang, P. & Mei, T. S. Advances in uneven organotransition metal-catalyzed electrochemistry. Chin. J. Org. Chem. 40, 3738–3747 (2020).
Chakraborty, P., Mandal, R., Garg, N. & Sundararaju, B. Current advances in transition metal-catalyzed uneven electrocatalysis. Coord. Chem. Rev. 444, 214065 (2021).
Yamamoto, Ok., Kuriyama, M. & Onomura, O. Uneven electrosynthesis: current advances in catalytic transformations. Curr. Opin. Electrochem. 28, 100714 (2021).
Lengthy, C.-J., He, Y.-H. & Guan, Z. Uneven oxidative mannich reactions promoted by photocatalysis and electrochemistry. Org. Biomol. Chem. 20, 2544–2561 (2022).
Bui, N.-N., Ho, X.-H., Mho, S.-I. & Jang, H.-Y. Organocatalyzed α-oxyamination of aldehydes utilizing anodic oxidation. Eur. J. Org. Chem. 2009, 5309–5312 (2009).
Jensen, Ok. L., Franke, P. T., Nielsen, L. T., Daasbjerg, Ok. & Jørgensen, Ok. A. Anodic oxidation and organocatalysis: direct regio- and stereoselective entry to meta-substituted anilines by α-arylation of aldehydes. Angew. Chem. Int. Ed. 49, 129–133 (2010).
Fu, N., Li, L., Yang, Q. & Luo, S. Catalytic Uneven electrochemical oxidative coupling of tertiary amines with easy ketones. Org. Lett. 19, 2122–2125 (2017).
Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic uneven electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).
Lu, F.-Y. et al. Extremely enantioselective electrosynthesis of C2-quaternary indolin-3-ones. Chem. Commun. 56, 623–626 (2020).
Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).
Zhou, P., Li, W., Lan, J. & Zhu, T. Electroredox carbene organocatalysis with iodide as promoter. Nat. Commun. 13, 3827 (2022).
Torii, S., Liu, P., Bhuvaneswari, N., Amatore, C. & Jutand, A. Chemical and electrochemical uneven dihydroxylation of olefins in I2−Ok2CO3−Ok2OsO2(OH)4 and I2−Ok3PO4/Ok2HPO4−Ok2OsO2(OH)4 methods with sharpless’ ligand. J. Org. Chem. 61, 3055–3060 (1996).
Cai, C.-Y. et al. Photoelectrochemical uneven catalysis allows site- and enantioselective cyanation of benzylic C–H bonds. Nat. Catal. 5, 943–951 (2022).
Fu, N. et al. New bisoxazoline ligands allow enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).
Huang, X., Zhang, Q., Lin, J., Harms, Ok. & Meggers, E. Electrical energy-driven uneven lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).
Zhang, Q., Chang, X., Peng, L. & Guo, C. Uneven lewis acid catalyzed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).
Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C−H activation by transient directing teams: expedient entry to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).
Gao, P.-S. et al. Cu(II)/TEMPO-catalyzed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines by way of shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).
Qiu, H. et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers. J. Am. Chem. Soc. 142, 9872–9878 (2020).
Music, L. et al. Twin electrocatalysis allows enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).
Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).
Gourley, R. N., Grimshaw, J. & Millar, P. G. Electrochemical discount within the presence of tertiary amines: an uneven synthesis of three,4-dihydro-4-methylcoumarin. Chem. Commun. 24, 1278–1279 (1967).
Nielsen, M. F. et al. Enantioselective cathodic discount of 4-methylcoumarin: dependence of selectivity on response situations and investigation of the mechanism. Chem. Eur. J. 3, 2011–2024 (1997).
Maekawa, H., Itoh, Ok., Goda, S. & Nishiguchi, I. Enantioselective electrochemical oxidation of enol acetates utilizing a chiral supporting electrolyte. Chirality 15, 95–100 (2003).
Chang, X., Zhang, J., Zhang, Q. & Guo, C. Merging electrosynthesis and bifunctional squaramide catalysis within the uneven detrifluoroacetylative alkylation reactions. Angew. Chem. Int. Ed. 59, 18500–18504 (2020).
Wu, R., Ma, C. & Zhu, Z. Enzymatic electrosynthesis as an rising electrochemical synthesis platform. Curr. Opin. Electrochem. 19, 1–7 (2020).
Lengthy, C.-J. et al. Merging the von-vatural catalytic exercise of lipase and electrosynthesis: uneven cxidative cross-coupling of secondary amines with ketones. Angew. Chem. Int. Ed. 61, e202203666 (2022).
Brak, Ok. & Jacobsen, E. N. Uneven ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).
Mahlau, M. & Checklist, B. Uneven counteranion-directed catalysis: idea, definition, and functions. Angew. Chem. Int. Ed. 52, 518–533 (2013).
Qian, D. & Solar, J. Current progress in uneven ion-pairing catalysis with ammonium Salts. Chem. Eur. J. 25, 3740–3751 (2019).
Rauniyar, V., Lackner, A. D., Hamilton, G. L. & Toste, F. D. Uneven electrophilic fluorination utilizing an anionic chiral phase-transfer catalyst. Science 334, 1681–1684 (2011).
Yan, J. et al. The functions of catalytic uneven halocyclization in pure product synthesis. Org. Chem. Entrance. 9, 499–516 (2022).
Xie, W. et al. Extremely enantioselective bromocyclization of tryptamines and its software within the synthesis of (−)-chimonanthine. Angew. Chem. Int. Ed. 52, 12924–12927 (2013).
Tang, H.-T., Jia, J.-S. & Pan, Y.-M. Halogen-mediated electrochemical natural synthesis. Org. Biomol. Chem. 18, 5315–5333 (2020).
Liu, Ok., Deng, Y., Music, W., Music, C. & Lei, A. Electrochemical dearomative halocyclization of tryptamine and tryptophol derivatives. Chin. J. Chem. 38, 1070–1074 (2020).
Wu, J., Abou-Hamdan, H., Guillot, R., Kouklovsky, C. & Vincent, G. Electrochemical synthesis of 3a-bromofuranoindolines and 3a-bromopyrroloindolines mediated by MgBr2. Chem. Commun. 56, 1713–1716 (2020).
Akiyama, T., Itoh, J., Yokota, Ok. & Fuchibe, Ok. Enantioselective mannich-type response catalyzed by a chiral brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).
Uraguchi, D. & Terada, M. Chiral brønsted acid-catalyzed direct mannich reactions by way of electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).
Liu, H. et al. Extremely uneven bromocyclization of tryptophol: sudden accelerating impact of DABCO-derived bromine advanced. Org. Lett. 16, 1908–1911 (2014).
Lindovska, P. & Movassaghi, M. Concise synthesis of (−)-hodgkinsine, (−)-calycosidine, (−)-hodgkinsine B, (−)-quadrigemine C, and (−)-psycholeine by way of convergent and directed modular meeting of cyclotryptamines. J. Am. Chem. Soc. 139, 17590–17596 (2017).
Wang, Y.-M., Wu, J., Hoong, C., Rauniyar, V. & Toste, F. D. Enantioselective halocyclization utilizing reagents tailor-made for chiral anion phase-transfer catalysis. J. Am. Chem. Soc. 134, 12928–12931 (2012).