14.2 C
New York
Monday, March 27, 2023

Electrical energy-driven uneven bromocyclization enabled by chiral phosphate anion phase-transfer catalysis


  • Schäfer, H. J. Contributions of natural electrosynthesis to inexperienced chemistry. C. R. Chim. 14, 745–765 (2011).

    Article 

    Google Scholar
     

  • Francke, R. & Little, R. D. Redox catalysis in natural electrosynthesis: primary rules and up to date developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ogawa, Ok. A. & Boydston, A. J. Current developments in organocatalyzed electroorganic chemistry. Chem. Lett. 44, 10–16 (2014).

    Article 

    Google Scholar
     

  • Yan, M., Kawamata, Y. & Baran, P. S. Artificial natural electrochemical strategies since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kärkäs, M. D. Electrochemical methods for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    Article 

    Google Scholar
     

  • Wiebe, A. et al. Electrifying natural synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yoshida, J.-i, Shimizu, A. & Hayashi, R. Electrogenerated cationic reactive intermediates: the pool technique and additional advances. Chem. Rev. 118, 4702–4730 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Current advances in oxidative R1-H/R2-H cross-coupling with hydrogen evolution by way of photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Jing, Q. & Moeller, Ok. D. From molecules to molecular surfaces. Exploiting the interaction between natural synthesis and electrochemistry. Acc. Chem. Res. 53, 135–143 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, Ok., Kuriyama, M. & Onomura, O. Anodic oxidation for the stereoselective synthesis of heterocycles. Acc. Chem. Res. 53, 105–120 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Novaes, L. F. T. et al. Electrocatalysis as an enabling expertise for natural synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ackermann, L. Science of Synthesis: Electrochemistry in Natural Synthesis (Thieme, 2021).

  • Tay, N. E. S., Lehnherr, D. & Rovis, T. Photons or electrons? A vital comparability of electrochemistry and photoredox catalysis for natural synthesis. Chem. Rev. 122, 2487–2649 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jacobsen, E. J., Pfaltz, A. & Yamamoto, H. Complete Uneven Catalysis I–III (Springer, 1999).

  • Carreira, E. M. & Yamamoto, H. Complete Chirality, 1st Version (Elsevier Science, 2012).

  • Wattanakit, C. Chiral metals as electrodes. Curr. Opin. Electrochem. 7, 54–60 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Grecchi, S., Arnaboldi, S., Rizzo, S. & Mussini, P. R. Superior chiral molecular media for enantioselective electrochemistry and electroanalysis. Curr. Opin. Electrochem. 30, 100810 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Ghosh, M., Shinde, V. S. & Rueping, M. A overview of uneven artificial natural electrochemistry and electrocatalysis: ideas, functions, current developments and future instructions. Beilstein. J. Org. Chem. 15, 2710–2746 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Q., Li, L. & Luo, S. Uneven electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chang, X., Zhang, Q. & Guo, C. Uneven electrochemical transformations. Angew. Chem. Int. Ed. 59, 12612–12622 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. Y., Xu, X. T., Wang, Z. H., Fang, P. & Mei, T. S. Advances in uneven organotransition metal-catalyzed electrochemistry. Chin. J. Org. Chem. 40, 3738–3747 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chakraborty, P., Mandal, R., Garg, N. & Sundararaju, B. Current advances in transition metal-catalyzed uneven electrocatalysis. Coord. Chem. Rev. 444, 214065 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yamamoto, Ok., Kuriyama, M. & Onomura, O. Uneven electrosynthesis: current advances in catalytic transformations. Curr. Opin. Electrochem. 28, 100714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lengthy, C.-J., He, Y.-H. & Guan, Z. Uneven oxidative mannich reactions promoted by photocatalysis and electrochemistry. Org. Biomol. Chem. 20, 2544–2561 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bui, N.-N., Ho, X.-H., Mho, S.-I. & Jang, H.-Y. Organocatalyzed α-oxyamination of aldehydes utilizing anodic oxidation. Eur. J. Org. Chem. 2009, 5309–5312 (2009).

    Article 

    Google Scholar
     

  • Jensen, Ok. L., Franke, P. T., Nielsen, L. T., Daasbjerg, Ok. & Jørgensen, Ok. A. Anodic oxidation and organocatalysis: direct regio- and stereoselective entry to meta-substituted anilines by α-arylation of aldehydes. Angew. Chem. Int. Ed. 49, 129–133 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Fu, N., Li, L., Yang, Q. & Luo, S. Catalytic Uneven electrochemical oxidative coupling of tertiary amines with easy ketones. Org. Lett. 19, 2122–2125 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic uneven electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lu, F.-Y. et al. Extremely enantioselective electrosynthesis of C2-quaternary indolin-3-ones. Chem. Commun. 56, 623–626 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, P., Li, W., Lan, J. & Zhu, T. Electroredox carbene organocatalysis with iodide as promoter. Nat. Commun. 13, 3827 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Torii, S., Liu, P., Bhuvaneswari, N., Amatore, C. & Jutand, A. Chemical and electrochemical uneven dihydroxylation of olefins in I2−Ok2CO3−Ok2OsO2(OH)4 and I2−Ok3PO4/Ok2HPO4−Ok2OsO2(OH)4 methods with sharpless’ ligand. J. Org. Chem. 61, 3055–3060 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Cai, C.-Y. et al. Photoelectrochemical uneven catalysis allows site- and enantioselective cyanation of benzylic C–H bonds. Nat. Catal. 5, 943–951 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fu, N. et al. New bisoxazoline ligands allow enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Huang, X., Zhang, Q., Lin, J., Harms, Ok. & Meggers, E. Electrical energy-driven uneven lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Q., Chang, X., Peng, L. & Guo, C. Uneven lewis acid catalyzed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C−H activation by transient directing teams: expedient entry to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Gao, P.-S. et al. Cu(II)/TEMPO-catalyzed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines by way of shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Qiu, H. et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers. J. Am. Chem. Soc. 142, 9872–9878 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Music, L. et al. Twin electrocatalysis allows enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gourley, R. N., Grimshaw, J. & Millar, P. G. Electrochemical discount within the presence of tertiary amines: an uneven synthesis of three,4-dihydro-4-methylcoumarin. Chem. Commun. 24, 1278–1279 (1967).

  • Nielsen, M. F. et al. Enantioselective cathodic discount of 4-methylcoumarin: dependence of selectivity on response situations and investigation of the mechanism. Chem. Eur. J. 3, 2011–2024 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Maekawa, H., Itoh, Ok., Goda, S. & Nishiguchi, I. Enantioselective electrochemical oxidation of enol acetates utilizing a chiral supporting electrolyte. Chirality 15, 95–100 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Chang, X., Zhang, J., Zhang, Q. & Guo, C. Merging electrosynthesis and bifunctional squaramide catalysis within the uneven detrifluoroacetylative alkylation reactions. Angew. Chem. Int. Ed. 59, 18500–18504 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, R., Ma, C. & Zhu, Z. Enzymatic electrosynthesis as an rising electrochemical synthesis platform. Curr. Opin. Electrochem. 19, 1–7 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lengthy, C.-J. et al. Merging the von-vatural catalytic exercise of lipase and electrosynthesis: uneven cxidative cross-coupling of secondary amines with ketones. Angew. Chem. Int. Ed. 61, e202203666 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brak, Ok. & Jacobsen, E. N. Uneven ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Mahlau, M. & Checklist, B. Uneven counteranion-directed catalysis: idea, definition, and functions. Angew. Chem. Int. Ed. 52, 518–533 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Qian, D. & Solar, J. Current progress in uneven ion-pairing catalysis with ammonium Salts. Chem. Eur. J. 25, 3740–3751 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rauniyar, V., Lackner, A. D., Hamilton, G. L. & Toste, F. D. Uneven electrophilic fluorination utilizing an anionic chiral phase-transfer catalyst. Science 334, 1681–1684 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yan, J. et al. The functions of catalytic uneven halocyclization in pure product synthesis. Org. Chem. Entrance. 9, 499–516 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xie, W. et al. Extremely enantioselective bromocyclization of tryptamines and its software within the synthesis of (−)-chimonanthine. Angew. Chem. Int. Ed. 52, 12924–12927 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Tang, H.-T., Jia, J.-S. & Pan, Y.-M. Halogen-mediated electrochemical natural synthesis. Org. Biomol. Chem. 18, 5315–5333 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Ok., Deng, Y., Music, W., Music, C. & Lei, A. Electrochemical dearomative halocyclization of tryptamine and tryptophol derivatives. Chin. J. Chem. 38, 1070–1074 (2020).

    Article 

    Google Scholar
     

  • Wu, J., Abou-Hamdan, H., Guillot, R., Kouklovsky, C. & Vincent, G. Electrochemical synthesis of 3a-bromofuranoindolines and 3a-bromopyrroloindolines mediated by MgBr2. Chem. Commun. 56, 1713–1716 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Akiyama, T., Itoh, J., Yokota, Ok. & Fuchibe, Ok. Enantioselective mannich-type response catalyzed by a chiral brønsted acid. Angew. Chem. Int. Ed. 43, 1566–1568 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Uraguchi, D. & Terada, M. Chiral brønsted acid-catalyzed direct mannich reactions by way of electrophilic activation. J. Am. Chem. Soc. 126, 5356–5357 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Liu, H. et al. Extremely uneven bromocyclization of tryptophol: sudden accelerating impact of DABCO-derived bromine advanced. Org. Lett. 16, 1908–1911 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Lindovska, P. & Movassaghi, M. Concise synthesis of (−)-hodgkinsine, (−)-calycosidine, (−)-hodgkinsine B, (−)-quadrigemine C, and (−)-psycholeine by way of convergent and directed modular meeting of cyclotryptamines. J. Am. Chem. Soc. 139, 17590–17596 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y.-M., Wu, J., Hoong, C., Rauniyar, V. & Toste, F. D. Enantioselective halocyclization utilizing reagents tailor-made for chiral anion phase-transfer catalysis. J. Am. Chem. Soc. 134, 12928–12931 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles