Tune, Y. et al. Nickel coating on carbon nanotubes and PProDOT-2CH2SH supported Pt nanoparticles because the electrocatalyst for methanol oxidation response. J. Alloys Compd. 937, 168343. https://doi.org/10.1016/j.jallcom.2022.168343 (2023).
Zhou, S. et al. Thermally pushed interfacial diffusion synthesis of composition-controllable Pt-Pb bimetallic nanoparticles boosts oxygen discount and methanol oxidation electrocatalysis. Renew. Vitality 182, 627–633. https://doi.org/10.1016/j.renene.2021.10.049 (2022).
Ekrami-Kakhki, M. S., Yavari, Z., Saffari, J. & Abbasi, S. Fabrication and analysis of Pt/M (M = Co, Fe) chitosan supported catalysts for methanol electrooxidation: software in direct alcohol gasoline cell. J. Nanostruct. 6, 221–234 (2016).
Mondal, S. & Malik, S. Simple synthesis strategy of Pt nanoparticles on polyaniline floor: An environment friendly electrocatalyst for methanol oxidation response. J Energy Sources 328, 271–279 (2016).
Naeimi, A., Ekrami-Kakhki, M. S. & Donyagard, F. Enhanced electrocatalytic efficiency of Pt nanoparticles immobilized on novel electrospun PVA@Ni/NiO/Cu advanced bio-nanofiber/chitosan based mostly on Calotropis procera plant for methanol electro-oxidation. Int. J. Hydrogen Vitality 36, 18949–18963 (2021).
Chang, X., Dong, F., Yang, S., Tang, Z. & Zha, F. Effectively dispersed Pt nanoparticles on business carbon black oxidized by ozone possess considerably excessive electro-catalytic exercise for methanol oxidation. Int. J. Hydrogen Vitality 44, 21559–21568 (2019).
Yue, X., Pu, Y., Zhang, W., Zhang, T. & Gao, W. Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hole spheres materials as extremely environment friendly methanol oxidation catalysts. J. Vitality Chem. 49, 275–282 (2020).
Hu, C., Zhou, Y., Xiao, M. & Yu, G. Exact measurement and dominant-facet management of ultra-small Pt nanoparticles for environment friendly ethylene glycol, methanol and ethanol oxidation electrocatalysts. Int. J. Hydrogen Vitality 45, 4341–4354 (2020).
Noroozifar, M., Khorasani-Motlagh, M., Ekrami-Kakhki, M. S. & Khaleghian-Moghadam, R. Enhanced electrocatalytic properties of Pt-chitosan nanocomposite for direct methanol gasoline cell by LaFeO3 and carbon nanotube. J. Energy Sources 248, 130–139 (2014).
Matin, M. A., Saleh Saad, M. A. H., Kumar, A., Al-Marri, M. J. & Mansour, S. A. Impact of gasoline content material on the electrocatalytic methanol oxidation efficiency of Pt/ZnO nanoparticles synthesized by resolution combustion. Appl. Surf. Sci. 492, 73–81 (2019).
Zhang, X., Yan, R., Zhou, W. & Zhou, S. Pt–Ru bimetallic nanoparticles anchored on carbon nanotubes/polyaniline composites with coral-like construction for enhanced methanol oxidation. J. Alloy. Compd. 920, 165990 (2022).
Radzi Hanifah, M. F. et al. One-pot synthesis of environment friendly decreased graphene oxide supported binary Pt-Pd alloy nanoparticles as superior electro-catalyst and its electro-catalytic efficiency towards methanol electro-oxidation response in direct methanol gasoline cell. J. Alloy. Compd. 793, 232–246 (2019).
Cao, R. et al. Novel synthesis of core-shell Au-Pt dendritic nanoparticles supported on carbon black for enhanced methanol electrooxidation. Appl. Surf. Sci. 433, 840–846 (2018).
Ting, C. C., Chao, C. H., Yu Tsai, C., Cheng, I. Ok. & Pan, F. M. Electrocatalytic efficiency of Pt nanoparticles sputter-deposited on indium tin oxide towards methanol oxidation response: The particle measurement impact. Appl. Surf. Sci. 416, 365–370 (2017).
Ekrami-Kakhki, M. S., Pouyamanesh, S., Abbasi, S., Heidari, G. & Beitollahi, H. Enhanced electrocatalytic efficiency of Pt nanoparticles integrated CeO2 nanorods on polyaniline-chitosan help for methanol electrooxidation (experimental and statistical evaluation). J. Cluster Sci. 32, 363–378 (2021).
Ekrami-Kakhki, M. S., Naeimi, A. & Donyagard, F. Pt nanoparticles supported on a novel electrospun polyvinyl alcohol-CuO-Co3O4/chitosan based mostly on Sesbania sesban plant as an electrocatalyst for direct methanol gasoline cells. Int. J. Hydrogen Vitality 44, 1671–1685 (2019).
Liu, Y. T. et al. Electrochemical exercise and stability of core–shell Fe2O3/Pt nanoparticles for methanol oxidation. J. Energy Sources 243, 622–629 (2013).
Dao, D. V. et al. Au@CeO2 nanoparticles supported Pt/C electrocatalyst to enhance the removing of CO in methanol oxidation response. J. Catal. 377, 589–599 (2019).
Li, L. et al. A novel structural design of hybrid nanotube with CNTs and CeO2 supported Pt nanoparticles with improved efficiency for methanol electro-oxidation. Int. J. Hydrogen Vitality 41, 9284–9294 (2016).
Kakaei, Ok. One-pot electrochemical synthesis of graphene by the exfoliation of graphite powder in sodium dodecyl sulfate and its ornament with platinum nanoparticles for methanol oxidation. Carbon 51, 195–201 (2013).
Du, M. et al. Pt-based alloy nanoparticles embedded electrospun porous carbon nanofibers as electrocatalysts for Methanol oxidation response. J. Alloy. Compd. 747, 978–988 (2018).
Solar, H. et al. Low-temperature plasma modified Vulcan XC72R as a help to boost the methanol oxidation efficiency of Pt nanoparticles. Int. J. Hydrogen Vitality 47, 31638–31646 (2022).
Maya-Cornejo, J., Garcia-Bernabe, A. & Compan, V. Bimetallic PtM electrocatalysts supported on single-wall carbon nanotubes for hydrogen and methanol electrooxidation in gasoline cells functions. Int. J. Hydrogen Vitality 43, 872–884 (2018).
Ekrami-Kakhki, M. S., Farzaneh, N. & Fathi, E. Superior electrocatalytic exercise of Pt-SrCoO3-δ nanoparticles supported on functionalized decreased graphene oxide-chitosan for ethanol oxidation. Int. J. Hydrogen Vitality 42, 21131–21145 (2017).
Ekrami-Kakhki, M. S., Farzaneh, N., Abbasi, S. & Makiabadi, B. Electrocatalytic exercise of Pt nanoparticles supported on novel functionalized decreased graphene oxide-chitosan for methanol electrooxidation. J. Mater. Sci. 28, 12373–12382 (2017).
Zhao, H. et al. Impact of over-oxidation therapy of Pt-Co/polypyrrole-carbon nanotube catalysts on methanol oxidation. Int. J. Hydrogen Vitality 34, 3908–3914 (2009).
Kakati, N., Maiti, J., Das, G., Lee, S. H. & Yoon, Y. S. An strategy of balancing the ionic conductivity and mechanical properties of PVA based mostly nanocomposite membrane for DMFC by varied crosslinking brokers with ionic liquid. Int. J. Hydrogen Vitality 40, 7114–7123 (2015).
Garcıa-Cruz, L., Casado-Coterillo, C., Iniesta, J., Montiel, V. & Irabien, A. Chitosan: poly (vinyl) alcohol composite alkaline membrane incorporating natural ionomers and layered silicate supplies right into a PEM electrochemical reactor. J. Membr. Sci. 498, 395–407 (2016).
Guibal, E. Heterogeneous catalysis on chitosan-based supplies: A evaluate. Prog. Polym. Sci. 30, 71–109 (2005).
Ekrami-Kakhki, M. S., Khorasani-Motlagh, M. & Noroozifar, M. Platinum nanoparticles self-assembled onto chitosan membrane as anode for direct methanol gasoline cell. J. Appl. Electrochem. 41, 527–534 (2011).
Hefnawy, M. A., Medany, S. S., El-Sherif, R. M. & Fadlallah, S. A. Inexperienced synthesis of NiO/Fe3O4@chitosan composite catalyst based mostly on graphite for urea electro-oxidation. Mater. Chem. Phys. 290, 126603 (2022).
Dorne, J. L. et al. Current advances within the danger evaluation of melamine and cyanuric acid in animal feed. Toxicol. Appl. Pharmacol. 270, 218–229 (2013).
Bananezhad, B. et al. Bentonite clay as an environment friendly substrate for the synthesis of the tremendous secure and recoverable magnetic nanocomposite of palladium (Fe3O4/Bentonite-Pd). Polyhedron 162, 192–200 (2019).
Chen, J., Yao, B., Li, C. & Shi, G. An improved Hummers methodology for eco-friendly synthesis of graphene oxide. Carbon 64, 225–229 (2013).
Zhua, H. & Xu, S. Preparation and fireplace conduct of inflexible polyurethane foams synthesized from modified urea–melamine– formaldehyde resins. RSC Adv. 32, 17879 (2018).
Boorboor Ajdari, F. et al. Melamine-functionalized graphene oxide: Synthesis, characterization and contemplating as pseudocapacitor electrode materials with intermixed POAP polymer. Appl. Surf. Sci. 459, 874–883 (2018).
Pai, A. R. & Nair, B. Synthesis of decreased graphene oxide utilizing novel exfoliation approach and its characterizations. J. Nano Electron. Phys. 5, 02032 (2013).
Dreyer, D. R., Murali, S., Zhu, Y., Ruoff, R. S. & Bielawski, C. W. Discount of graphite oxide utilizing alcohols. J. Mater. Chem. 21, 3443 (2011).
Titelman, G. I. et al. Traits and microstructure of aqueous colloidal dispersions of graphite oxide. Carbon 43, 641–649 (2005).
Naeimi, A., Honarmand, M., Chaji, M. A. & Khosravi, S. Inexperienced synthesis of bentonite/cellulose@lead oxide bio-nanocomposite with help of Pistacia Atlantica extract for environment friendly photocatalytic degradation of ciprofloxacin. Adv. Powder Technol. 33, 103441 (2022).
Abdel-Aal, S. Ok., Beskrovnyi, A. I., Ionov, A. M., Mozhchil, R. N. & Abdel-Rahman, A. S. Construction investigation by neutron diffraction and X-Ray diffraction of graphene nanocomposite CuO-rGO ready by low-cost methodology. Phys. Standing Solidi A 218, 2100138 (2021).
Honarmand, M., Golmohammadi, M. & Naeimi, A. Biosynthesis of tin oxide (SnO2) nanoparticles utilizing jujube fruit for photocatalytic degradation of natural dyes. Adv. Powder Technol. 30, 1551–1557 (2019).
Wu, S. et al. Extremely dispersed ultrafine Pt nanoparticles on decreased graphene oxide nanosheets: In situ sacrificial template synthesis and superior electrocatalytic efficiency for methanol oxidation. ACS Appl. Mater. Interfaces 7, 22935–22940 (2015).
Xie, F., Gan, M., Jiang, M. & Ma, L. Fe-doped CoP nanotube heterostructure enhanced the catalytic exercise of Pt nanoparticles in direction of methanol oxidation response. Int. J. Hydrogen Vitality 45, 24807 (2020).
Shafaei Douk, A., Saravani, H. & Noroozifar, M. One-pot synthesis of ultrasmall PtAg nanoparticles embellished on graphene as a high-performance catalyst towards methanol oxidation. Int. J. Hydrogen Vitality 43, 7946–7955 (2018).
Zhou, C., Chen, Y., Guo, Z., Wang, X. & Yang, Y. Promoted cardio oxidation of benzyl alcohol on CNT supported platinum by iron oxide. Chem. Commun. 47, 7473–7475 (2011).
Pattabiraman, R. Electrochemical investigations on carbon supported palladium catalysts. Appl. Catal. A 153, 9 (1997).
Tiwari, J. N., Tiwari, R. N. & Lin, Ok. L. Managed synthesis and progress of good platinum nanocubes utilizing a pair of low-resistivity fixed silicon wafers and their electrocatalytic properties. Nano Res. 4, 541–549 (2011).
Liu, L., Pippel, E., Scholz, R. & Gosele, U. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 9, 4352–4358 (2009).
Naidoo, Q. L., Naidoo, S., Petrik, L., Nechaev, A. & Ndungu, P. The affect of carbon based mostly helps and the position of synthesis procedures on the formation of platinum and platinum-ruthenium clusters and nanoparticles for the event of extremely energetic gasoline cell catalysts. Int. J. Hydrogen Vitality 37, 9459–9469 (2012).
Deng, J. et al. Fabrication of layered porous TiO2/carbon fiber paper embellished by Pt nanoparticles utilizing atomic layer deposition for environment friendly methanol electro-oxidation. J. Electroanal. Chem. 874, 114468 (2020).
Wang, H., Wang, X., Zheng, J., Peng, F. & Yu, H. Enhanced exercise and sturdiness of nanosized Pt-SnO2/IrO2/CNTs catalyst for methanol electrooxidation. J. Nanosci. Nanotechnol. 15, 3662–3669 (2015).
Dou, M. et al. SnO2 nanocluster supported Pt catalyst with excessive stability for proton change membrane gasoline cells. Electrochim. Acta 92, 468–473 (2013).
Feng, L., Li, Ok., Chang, J., Liu, C. & Xing, W. Nanostructured PtRu/C catalyst promoted by CoP as an environment friendly and sturdy anode catalyst in direct methanol gasoline cells. Nano Vitality 15, 462–469 (2015).
Ma, J., Wang, L., Mu, X. & Cao, Y. Enhanced electrocatalytic exercise of Pt nanoparticles supported on functionalized graphene for methanol oxidation and oxygen discount. J. Colloid Interface Sci. 457, 102–107 (2015).
Rafiei, H., Shirvani, M. & Ogunseitan, O. Removing of lead from aqueous options by a poly(acrylic acid)/bentonite nanocomposite. Appl. Water Sci. 6, 331–338 (2016).
Ding, G., Wang, W., Jiang, T. & Han, B. An environment friendly palladium catalyst on bentonite for Suzuki-Miyaura response at room temperature. Inexperienced Chem. 15, 3396–3403 (2013).
Peng, Ok. et al. Carbon supported PtPdCr ternary alloy nanoparticles with enhanced electrocatalytic exercise and sturdiness for methanol oxidation response. Int. J. Hydrogen Vitality 45, 22752–22760 (2020).
Kim, H. J. et al. Floor elemental distribution impact of Pt-Pb hexagonal nanoplates for electrocatalytic methanol oxidation response. Chin. J. Catal. 41, 813–819 (2020).
Khalifeh-Soltani, M. S., Shams, E. & Sharifi, E. Pt-Ru nanoparticles anchored on poly(sensible cresyl blue) as a brand new polymeric help: Software as an environment friendly electrocatalyst in methanol oxidation response. Int. J. Hydrogen Vitality 45, 849–860 (2020).
Wei, D. et al. Pt-based catalyst embellished by bimetallic FeNi2P with excellent CO tolerance and catalytic exercise for methanol electrooxidation. Int. J. Hydrogen Vitality 45, 4875–4886 (2020).
Xue, S. et al. Hexapod PtRuCu nanocrystalline alloy for extremely environment friendly and secure methanol oxidation. ACS Catal. 8, 7578–7584 (2018).
Zhong, J. P. et al. A novel technique for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites towards extremely environment friendly methanol oxidation. J. Catal. 381, 275–284 (2020).
Huang, H. et al. Controllable synthesis of grain boundary-enriched Pt nanoworms embellished on graphitic carbon nanosheets for ultrahigh methanol oxidation catalytic exercise. J. Vitality Chem. 57, 601–609 (2021).
Chang, J., Feng, L., Liu, C., Xing, W. & Hu, X. Ni2P enhances the exercise and sturdiness of the Pt anode catalyst in direct methanol gasoline cells. Vitality Environ. Sci. 7, 1628–1632 (2014).
Zhang, C. W., Xu, L. B. & Chen, J. F. Excessive loading Pt nanoparticles on ordered mesoporous carbon sphere arrays for extremely energetic methanol electro-oxidation. Chin. Chem. Lett. 27, 832–836 (2016).
Zhu, M. et al. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated help for enhancing photoelectrocatalytic methanol oxidation. Appl. Catal. B 203, 108–115 (2017).
Cao, M., Wu, D. & Cao, R. Current advances within the stabilization of platinum electrocatalysts for fuel-cell reactions. Chem. Cat. Chem. 6, 26–45 (2014).
Hu, J. et al. Seen light-enhanced electrocatalytic alcohol oxidation based mostly on two dimensional Pt-BiOBr nanocomposite. J. Colloid Interface Sci. 524, 195 (2018).
Ding, Ok. et al. Electrochemical conduct of the self-assembled membrane fashioned by calmodulin (CaM) on a Au substrate. J. Electroanal. Chem. 513, 67–71 (2001).
He, Z., Chen, J., Liu, D., Zhou, H. & Kuang, Y. Electrodeposition of Pt-Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diamond Relat. Mater. 13, 1764–1770 (2004).
Noroozifar, M., Khorasani-Motlagh, M., Khaleghian-Moghadam, R., Ekrami-Kakhki, M. S. & Shahraki, M. Incorporation impact of nanosized perovskite LaFe0.7Co0.3O3 on the electrochemical exercise of Pt nanoparticles-multi walled carbon nanotube composite towards methanol oxidation. J. Stable State Chem. 201, 41–47 (2013).
Xu, H. et al. Facile synthesis of Pd-decorated Pt/Ru networks with extremely improved exercise for methanol electrooxidation in alkaline media. New J. Chem. 41, 3048–3054 (2017).
Zhao, Y. et al. Electrooxidation of methanol and ethanol in acidic medium utilizing a platinum electrode modified with lanthanum-doped tantalum oxide movie. Electrochim. Acta 151, 544–551 (2015).