11.1 C
New York
Saturday, April 1, 2023

Inhibiting collective cation migration in Li-rich cathode supplies as a method to mitigate voltage hysteresis


  • Goodenough, J. B. & Park, Ok.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Manthiram, A. An outlook on lithium ion battery know-how. ACS Cent. Sci. 3, 1063–1069 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Search engine marketing, D.-H. et al. The structural and chemical origin of the oxygen redox exercise in layered and cation-disordered Li-excess cathode supplies. Nat. Chem. 8, 692–697 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Nayak, P. Ok. et al. Assessment on challenges and up to date advances within the electrochemical efficiency of excessive capability Li- and Mn-rich cathode supplies for Li-ion batteries. Adv. Vitality Mater. 8, 1702397 (2018).

    Article 

    Google Scholar
     

  • Gent, W. E. et al. Coupling between oxygen redox and cation migration explains uncommon electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).

    Article 

    Google Scholar
     

  • Home, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes related to molecular O2 trapped within the bulk. Nat. Vitality 5, 777–785 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption examine of a layered manganese-chromium oxide-based cathode materials. J. Electrochem. Soc. 149, A176–A184 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Lyu, Y. et al. Probing reversible multielectron switch and construction evolution of Li1.2Cr0.4Mn0.4O2 cathode materials for Li-ion batteries in a voltage vary of 1.0–4.8 V. Chem. Mater. 27, 5238–5252 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ammundsen, B. et al. Native construction and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode materials. J. Electrochem. Soc. 149, A431–A436 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode materials. J. Electrochem. Soc. 150, A1044–A1051 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Lu, Z. & Dahn, J. R. Construction and electrochemistry of layered Li[CrxLi(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 149, A1454 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. & Noguchi, H. Novel layered Li Cr Ti O cathode supplies associated to the LiCrO2 Li2TiO3 stable resolution. J. Electrochem. Soc. 150, A601–A607 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Mi, X., Li, H. & Huang, X. Carbon-coated Li1.2Cr0.4Ti0.4O2 cathode materials for lithium-ion batteries. Electrochem. Strong State Lett. 9, A324–A327 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. & Noguchi, H. Novel layered Li–Cr–Ti–O cathode supplies for lithium rechargeable batteries. Electrochem. Commun. 4, 560–564 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Mi, X., Li, H. & Huang, X. Electrochemical and structural research of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). J. Energy Sources 174, 867–871 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Shi, T. et al. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn). Chem. Mater. 30, 8811–8821 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Vitality Environ. Sci. 11, 926–932 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Luo, Ok. et al. Cost-compensation in 3d-transition-metal-oxide intercalation cathodes by the technology of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2x LiF (0 ≤ x ≤ 2) binary system. J. Energy Sources 367, 122–129 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Takeda, N., Ikeuchi, I., Natsui, R., Nakura, Ok. & Yabuuchi, N. Improved electrode efficiency of lithium-excess molybdenum oxyfluoride: titanium substitution with concentrated electrolyte. ACS Appl. Vitality Mater. 2, 1629–1633 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Suo, L. et al. Fluorine-donating electrolytes allow extremely reversible 5-V-class Li steel batteries. Proc. Natl Acad. Sci. USA 115, 1156 LP–1151161 (2018).

    Article 

    Google Scholar
     

  • Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Davenport, A. J. et al. In situ X‐ray absorption examine of chromium valency adjustments in passive oxides on sputtered AlCr skinny movies underneath electrochemical management. J. Electrochem. Soc. 138, 337–338 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Manceau, A. & Charlet, L. X-ray absorption spectroscopic examine of the sorption of Cr(III) on the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 148, 425–442 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Reed, J. & Ceder, G. Function of digital construction within the susceptibility of metastable transition-metal oxide constructions to transformation. Chem. Rev. 104, 4513–4534 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel part transition in LixMnO2. Electrochem. Strong State Lett. 4, A78 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Bréger, J. et al. Impact of excessive voltage on the construction and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical examine. Chem. Mater. 18, 4768–4781 (2006).

    Article 

    Google Scholar
     

  • Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparability of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Bo, S.-H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 28, 1419–1429 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Lee, E. et al. Function of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J. Mater. Chem. A 3, 9915–9924 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Karan, N. Ok. et al. Morphology, construction, and electrochemistry of solution-derived LiMn0.5−xCr2xNi0.5−xO2 for lithium-ion cells. J. Electrochem. Soc. 156, A553–A562 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ren, S. et al. Improved voltage and biking for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv. Sci. 2, 1500128 (2015).

    Article 

    Google Scholar
     

  • Huang, J. et al. Non-topotactic reactions allow excessive fee functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, X. et al. Reversible Mn/Cr twin redox in cation-disordered Li-excess cathode supplies for secure lithium ion batteries. Acta Mater. 212, 116935 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hoshino, S. et al. Reversible three-electron redox response of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Vitality Lett. 2, 733–738 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Nakajima, M. & Yabuuchi, N. Lithium-excess cation-disordered rocksalt-type oxide with nanoscale part segregation: Li1.25Nb0.25V0.5O2. Chem. Mater. 29, 6927–6935 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, R. et al. Disordered lithium-rich oxyfluoride as a secure host for enhanced Li+ intercalation storage. Adv. Vitality Mater. 5, 1401814 (2015).

    Article 

    Google Scholar
     

  • Yamada, A., Tanaka, M., Tanaka, Ok. & Sekai, Ok. Jahn–Teller instability in spinel Li–Mn–O. J. Energy Sources 81–82, 73–78 (1999).

    Article 

    Google Scholar
     

  • Zuo, C. et al. Double the capability of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Vitality Mater. 10, 2000363 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ravel, B. & Newville, M. ATHENA and ARTEMIS interactive graphical knowledge evaluation utilizing IFEFFIT. Phys. Scr. 2005, 1007 (2005).

    Article 

    Google Scholar
     

  • Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for constructing physics fashions. Phys. Rev. B 87, 35125 (2013).

    Article 

    Google Scholar
     

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U examine. Phys. Rev. B 57, 1505–1509 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition steel oxides throughout the GGA+U framework. Phys. Rev. B 73, 195107 (2006).

    Article 

    Google Scholar
     

  • Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density useful. Phys. Rev. Lett. 115, 36402 (2015).

    Article 

    Google Scholar
     

  • Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density useful idea. Phys. Rev. B 93, 45132 (2016).

    Article 

    Google Scholar
     

  • Kitchaev, D. A. et al. Design rules for prime transition steel capability in disordered rocksalt Li-ion cathodes. Vitality Environ. Sci. 11, 2159–2171 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lun, Z. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition steel oxide cathode supplies. Adv. Vitality Mater. 8, 1701533 (2018).

    Article 

    Google Scholar
     

  • Ouyang, B. et al. Impact of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv. Vitality Mater. 10, 1903240 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van der Ven, A. Elementary insights about interlayer cation migration in Li-ion electrodes at excessive states of cost. J. Mater. Chem. A 7, 11996–12007 (2019).

    Article 

    Google Scholar
     

  • Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation because the origin of the anomalous capability of Mn-containing Li-excess cathode supplies. Nat. Vitality 4, 639–646 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles