Goodenough, J. B. & Park, Ok.-S. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).
Manthiram, A. An outlook on lithium ion battery know-how. ACS Cent. Sci. 3, 1063–1069 (2017).
Search engine marketing, D.-H. et al. The structural and chemical origin of the oxygen redox exercise in layered and cation-disordered Li-excess cathode supplies. Nat. Chem. 8, 692–697 (2016).
Nayak, P. Ok. et al. Assessment on challenges and up to date advances within the electrochemical efficiency of excessive capability Li- and Mn-rich cathode supplies for Li-ion batteries. Adv. Vitality Mater. 8, 1702397 (2018).
Gent, W. E. et al. Coupling between oxygen redox and cation migration explains uncommon electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017).
Home, R. A. et al. First-cycle voltage hysteresis in Li-rich 3d cathodes related to molecular O2 trapped within the bulk. Nat. Vitality 5, 777–785 (2020).
Balasubramanian, M., McBreen, J., Davidson, I. J., Whitfield, P. S. & Kargina, I. In situ X-ray absorption examine of a layered manganese-chromium oxide-based cathode materials. J. Electrochem. Soc. 149, A176–A184 (2002).
Lyu, Y. et al. Probing reversible multielectron switch and construction evolution of Li1.2Cr0.4Mn0.4O2 cathode materials for Li-ion batteries in a voltage vary of 1.0–4.8 V. Chem. Mater. 27, 5238–5252 (2015).
Ammundsen, B. et al. Native construction and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode materials. J. Electrochem. Soc. 149, A431–A436 (2002).
Lu, Z. & Dahn, J. R. In situ and ex situ XRD investigation of Li[CrxLi1/3−x/3Mn2/3−2x/3]O2 (x = 1/3) cathode materials. J. Electrochem. Soc. 150, A1044–A1051 (2003).
Lu, Z. & Dahn, J. R. Construction and electrochemistry of layered Li[CrxLi(1/3−x/3)Mn(2/3−2x/3)]O2. J. Electrochem. Soc. 149, A1454 (2002).
Zhang, L. & Noguchi, H. Novel layered Li Cr Ti O cathode supplies associated to the LiCrO2 Li2TiO3 stable resolution. J. Electrochem. Soc. 150, A601–A607 (2003).
Mi, X., Li, H. & Huang, X. Carbon-coated Li1.2Cr0.4Ti0.4O2 cathode materials for lithium-ion batteries. Electrochem. Strong State Lett. 9, A324–A327 (2006).
Zhang, L. & Noguchi, H. Novel layered Li–Cr–Ti–O cathode supplies for lithium rechargeable batteries. Electrochem. Commun. 4, 560–564 (2002).
Mi, X., Li, H. & Huang, X. Electrochemical and structural research of the carbon-coated Li[CrxLi(1/3−x/3)Ti(2/3−2x/3)]O2 (x=0.3, 0.35, 0.4, 0.45). J. Energy Sources 174, 867–871 (2007).
Eum, D. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 19, 419–427 (2020).
Boldyrev, V. V. Mechanochemistry and mechanical activation of solids. Russ. Chem. Rev. 75, 177–189 (2006).
Shi, T. et al. Shear-assisted formation of cation-disordered rocksalt NaMO2 (M = Fe or Mn). Chem. Mater. 30, 8811–8821 (2018).
Home, R. A. et al. Lithium manganese oxyfluoride as a brand new cathode materials exhibiting oxygen redox. Vitality Environ. Sci. 11, 926–932 (2018).
Luo, Ok. et al. Cost-compensation in 3d-transition-metal-oxide intercalation cathodes by the technology of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).
Lee, J. et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode supplies. Nature 556, 185–190 (2018).
Takeda, N. et al. Reversible Li storage for nanosize cation/anion-disordered rocksalt-type oxyfluorides: LiMoO2–x LiF (0 ≤ x ≤ 2) binary system. J. Energy Sources 367, 122–129 (2017).
Takeda, N., Ikeuchi, I., Natsui, R., Nakura, Ok. & Yabuuchi, N. Improved electrode efficiency of lithium-excess molybdenum oxyfluoride: titanium substitution with concentrated electrolyte. ACS Appl. Vitality Mater. 2, 1629–1633 (2019).
Suo, L. et al. Fluorine-donating electrolytes allow extremely reversible 5-V-class Li steel batteries. Proc. Natl Acad. Sci. USA 115, 1156 LP–1151161 (2018).
Wang, J. et al. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 7, 12032 (2016).
Davenport, A. J. et al. In situ X‐ray absorption examine of chromium valency adjustments in passive oxides on sputtered AlCr skinny movies underneath electrochemical management. J. Electrochem. Soc. 138, 337–338 (1991).
Manceau, A. & Charlet, L. X-ray absorption spectroscopic examine of the sorption of Cr(III) on the oxide-water interface: I. Molecular mechanism of Cr(III) oxidation on Mn oxides. J. Colloid Interface Sci. 148, 425–442 (1992).
Reed, J. & Ceder, G. Function of digital construction within the susceptibility of metastable transition-metal oxide constructions to transformation. Chem. Rev. 104, 4513–4534 (2004).
Reed, J., Ceder, G. & Van Der Ven, A. Layered-to-spinel part transition in LixMnO2. Electrochem. Strong State Lett. 4, A78 (2001).
Bréger, J. et al. Impact of excessive voltage on the construction and electrochemistry of LiNi0.5Mn0.5O2: a joint experimental and theoretical examine. Chem. Mater. 18, 4768–4781 (2006).
Kim, S., Ma, X., Ong, S. P. & Ceder, G. A comparability of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).
Bo, S.-H., Li, X., Toumar, A. J. & Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 28, 1419–1429 (2016).
Lee, E. et al. Function of Cr3+/Cr6+ redox in chromium-substituted Li2MnO3·LiNi1/2Mn1/2O2 layered composite cathodes: electrochemistry and voltage fade. J. Mater. Chem. A 3, 9915–9924 (2015).
Karan, N. Ok. et al. Morphology, construction, and electrochemistry of solution-derived LiMn0.5−xCr2xNi0.5−xO2 for lithium-ion cells. J. Electrochem. Soc. 156, A553–A562 (2009).
Ren, S. et al. Improved voltage and biking for Li+ intercalation in high-capacity disordered oxyfluoride cathodes. Adv. Sci. 2, 1500128 (2015).
Huang, J. et al. Non-topotactic reactions allow excessive fee functionality in Li-rich cathode supplies. Nat. Vitality 6, 706–714 (2021).
Zheng, X. et al. Reversible Mn/Cr twin redox in cation-disordered Li-excess cathode supplies for secure lithium ion batteries. Acta Mater. 212, 116935 (2021).
Hoshino, S. et al. Reversible three-electron redox response of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Vitality Lett. 2, 733–738 (2017).
Nakajima, M. & Yabuuchi, N. Lithium-excess cation-disordered rocksalt-type oxide with nanoscale part segregation: Li1.25Nb0.25V0.5O2. Chem. Mater. 29, 6927–6935 (2017).
Chen, R. et al. Disordered lithium-rich oxyfluoride as a secure host for enhanced Li+ intercalation storage. Adv. Vitality Mater. 5, 1401814 (2015).
Yamada, A., Tanaka, M., Tanaka, Ok. & Sekai, Ok. Jahn–Teller instability in spinel Li–Mn–O. J. Energy Sources 81–82, 73–78 (1999).
Zuo, C. et al. Double the capability of manganese spinel for lithium-ion storage by suppression of cooperative Jahn–Teller distortion. Adv. Vitality Mater. 10, 2000363 (2020).
Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: knowledge evaluation for X-ray absorption spectroscopy utilizing IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).
Ravel, B. & Newville, M. ATHENA and ARTEMIS interactive graphical knowledge evaluation utilizing IFEFFIT. Phys. Scr. 2005, 1007 (2005).
Nelson, L. J., Hart, G. L. W., Zhou, F. & Ozoliņš, V. Compressive sensing as a paradigm for constructing physics fashions. Phys. Rev. B 87, 35125 (2013).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave technique. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio complete vitality calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U examine. Phys. Rev. B 57, 1505–1509 (1998).
Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition steel oxides throughout the GGA+U framework. Phys. Rev. B 73, 195107 (2006).
Solar, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density useful. Phys. Rev. Lett. 115, 36402 (2015).
Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density useful idea. Phys. Rev. B 93, 45132 (2016).
Kitchaev, D. A. et al. Design rules for prime transition steel capability in disordered rocksalt Li-ion cathodes. Vitality Environ. Sci. 11, 2159–2171 (2018).
Lun, Z. et al. Design rules for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6, 153–168 (2020).
Richards, W. D., Dacek, S. T., Kitchaev, D. A. & Ceder, G. Fluorination of lithium-excess transition steel oxide cathode supplies. Adv. Vitality Mater. 8, 1701533 (2018).
Ouyang, B. et al. Impact of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Adv. Vitality Mater. 10, 1903240 (2020).
Vinckevičiūtė, J., Radin, M. D., Faenza, N. V., Amatucci, G. G. & Van der Ven, A. Elementary insights about interlayer cation migration in Li-ion electrodes at excessive states of cost. J. Mater. Chem. A 7, 11996–12007 (2019).
Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation because the origin of the anomalous capability of Mn-containing Li-excess cathode supplies. Nat. Vitality 4, 639–646 (2019).