Sedriks, A. J. Corrosion of stainless steels. Encycl. Mater. Sci. Technol., 1707–1708 (2001).
Fossati, A., Borgioli, F., Galvanetto, E. & Bacci, T. Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless-steel in NaCl options. Corros. Sci. 48, 1513–1527 (2006).
Xin, S. & Li, M. Electrochemical corrosion traits of kind 316L stainless-steel in scorching concentrated seawater. Corros. Sci. 81, 96–101 (2014).
Srinivasan, N. et al. Close to boundary gradient zone and sensitization management in austenitic stainless-steel. Corros. Sci. 100, 544–555 (2015).
Brewick, P. T. et al. Microstructure-sensitive modeling of pitting corrosion: Impact of the crystallographic orientation. Corros. Sci. 129, 54–69 (2017).
Li, J. et al. Quantitative 3D characterization for kinetics of corrosion initiation and propagation in additively manufactured austenitic stainless-steel. Adv. Sci. 9, 2201162 (2022).
Shockley, J. M. et al. Direct commentary of corrosive put on by in situ scanning probe microscopy. ACS Appl. Mater. Interfaces 12, 23543–23553 (2020).
Martin, F. A., Bataillon, C. & Cousty, J. In situ AFM detection of pit onset location on a 304L stainless-steel. Corros. Sci. 50, 84–92 (2008).
Hayden, S. C. et al. Genesis of nanogalvanic corrosion revealed in pearlitic metal. Nano Lett. 22, 7087–7093 (2022).
Weisenhorn, A. L., Maivald, P., Butt, H. J. & Hansma, P. Ok. Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys. Rev. B 45, 11226–11232 (1992).
Tao, J. H., Nielsen, M. H. & De Yoreo, J. J. Nucleation and section transformation pathways in electrolyte options investigated by in situ microscopy strategies. Curr. Opin. Colloid Interface Sci. 34, 74–88 (2018).
Birbilis, N., Meyer, Ok., Muddle, B. C. & Lynch, S. P. In situ measurement of corrosion on the nanoscale. Corros. Sci. 51, 1569–1572 (2009).
Abbott, A. P., Capper, G., McKenzie, Ok. J., Glidle, A. & Ryder, Ok. S. Electropolishing of stainless steels in a choline chloride based mostly ionic liquid: an electrochemical research with floor characterisation utilizing SEM and atomic drive microscopy. Phys. Chem. Chem. Phys. 8, 4214–4221 (2006).
Manne, S., Massie, J., Elings, V. B., Hansma, P. Ok. & Gewirth, A. A. Electrochemistry on a gold floor noticed with the atomic drive microscope. J. Vac. Sci. Technol. B 9, 950–954 (1991).
Reggente, M., Passeri, D., Rossi, M., Tamburri, E. & Terranova, M. L. Electrochemical atomic drive microscopy: in situ monitoring of electrochemical processes. Aip. Conf. Proc. 1873, 020009-1-6 (2017).
Chen, H. B., Qin, Z. B., He, M. F., Liu, Y. C. & Wu, Z. Software of electrochemical atomic drive microscopy (EC-AFM) within the corrosion research of metallic supplies. Supplies 13, 668 (2020).
Hu, Q. et al. The thermodynamics of calcite nucleation at natural interfaces: classical vs. non-classical pathways. Faraday Talk about 159, 509–523 (2012).
Padhy, N., Paul, R., Mudali, U. Ok. & Raj, B. Morphological and compositional evaluation of passive movie on austenitic stainless-steel in nitric acid medium. Appl. Surf. Sci. 257, 5088–5097 (2011).
Zhang, X. G. et al. Corrosion conduct of AISI321 stainless-steel in an ethylene glycol-water answer. Int. J. Electrochem. Sci. 14, 2683–2692 (2019).
Yasakau, Ok. Software of AFM-based strategies in research of corrosion and corrosion inhibition of metallic alloys. Corros. Mater. Degrad. 1, 345–372 (2020).
Li, Y. & Cheng, Y. F. Passive movie development on carbon metal and its nanoscale options at numerous passivating potentials. Appl. Surf. Sci. 396, 144–153 (2017).
Li, Y. & Cheng, Y. F. In-situ characterization of the early stage of pipeline metal corrosion in bicarbonate options by electrochemical atomic drive microscopy. Surf. Interface Anal. 49, 133–139 (2017).
Moore, S. et al. A research of dynamic nanoscale corrosion initiation occasions utilizing HS-AFM. Faraday Talk about. 210, 409–428 (2018).
Shahryari, A., Szpunar, J. A. & Orrianovic, S. The affect of crystallographic orientation distribution on 316LVM stainless-steel pitting conduct. Corros. Sci. 51, 677–682 (2009).
Sato, A., Kon, Ok., Tsujikawa, S. & Hisamatsu, Y. Impact of crystallographic orientation on dissolution conduct of stainless steels single crystal. Mater. Trans. JIM 37, 729–732 (1996).
Dong, S. Q. et al. Elucidating the grain-orientation dependent corrosion charges of austenitic stainless steels. Mater. Des. 191, 108583 (2020).
Guo, L. & Searson, P. C. Simulations of island development and island spatial distribution throughout electrodeposition. Electrochem. Stable-State Lett. 10, D76–D78 (2007).
Guo, L., Oskam, G., Radisic, A., Hoffmann, P. M. & Searson, P. C.Island development in electrodeposition. J. Phys. D. 44, 443001 (2011).
Pan, H. H. et al. Anisotropic demineralization and oriented meeting of hydroxyapatite crystals in enamel: good constructions of biominerals. J. Phys. Chem. B 112, 7162–7165 (2008).
Tao, J. H. et al. Structural elements and anisotropic dissolution behaviors in a single hexagonal single crystal of beta-tricalcium phosphate. Cryst. Development Des. 8, 2227–2234 (2008).
Tao, J. H. et al. Controlling metal-organic framework/ZnO heterostructure kinetics via selective ligand binding to ZnO floor steps. Chem. Mater. 32, 6666–6675 (2020).
Paik, J. & Thayamballi, A. Final power of ageing ships. Proc. Inst. Mech. Eng., Half M: J. Eng. Marit. Environ. 216, 57–77 (2002).
Ghahari, M. et al. Synchrotron X-ray radiography research of pitting corrosion of stainless-steel: Extraction of pit propagation parameters. Corros. Sci. 100, 23–35 (2015).
Shibata, T. & Okamoto, G. Impact of the Potential of Etching Remedy and Passivation Remedy on the Stability of Passive Stainless Steels. Corros. Eng. Dig. 21, 263–270 (1972).
Saadawy, M. Kinetics of pitting dissolution of austenitic stainless-steel 304 in sodium chloride answer. Int. Sch. Res. Notices, 916367, (2012).
Wang, R. G. et al. Utilizing atomic drive microscopy to measure thickness of passive movie on stainless-steel immersed in aqueous answer. Sci. Rep. 9, (2019).
Zhang, P., Wu, J., Zhang, W., Lu, X. & Wang, Ok. A pitting mechanism for passive 304 stainless-steel in sulphuric acid media containing chloride ions. Corros. Sci. 34, 1343–1354 (1993).
Scheiner, S. & Hellmich, C. Secure pitting corrosion of stainless-steel as diffusion-controlled dissolution course of with a pointy shifting electrode boundary. Corros. Sci. 49, 319–346 (2007).
Nguyen, V. & Newman, R. C. A complete modelling and experimental method to check the diffusion-controlled dissolution in pitting corrosion. Corros. Sci. 186, 109461 (2021).
Galvele, J. R. Transport processes and the mechanism of pitting of metals. J. Electrochem. Soc. 123, 464 (1976).
Tester, J. W. & Isaacs, H. S. Diffusional results in simulated localized corrosion. J. Electrochem. Soc. 122, 1438–1445 (1975).
Beck, T. R. & Chan, S. G. Experimental-observations and evaluation of hydrodynamic results on development of small pits. Corrosion 37, 665–671 (1981).
Balluffi, R. W. Grain-boundary diffusion mechanisms in metals. Metall. Trans. A 13, 2069–2095 (1982).
Dove, P. M., Han, N. Z. & De Yoreo, J. J. Mechanisms of classical crystal development idea clarify quartz and silicate dissolution conduct. Proc. Natl Acad. Sci. U.S.A. 102, 15357–15362 (2005).