Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular supplies towards reminiscence units. Science 279, 44–48 (1998).
Sawa, A. Resistive switching in transition metallic oxides. Mater. At the moment 11, 28–36 (2008).
Waser, R. & Aono, M. Nanoionics-based resistive switching reminiscences. Nat. Mater. 6, 833–840 (2007).
Chua, L. O. The fourth aspect. Proc. IEEE 100, 1920–1927 (2012).
Wang, Z. et al. Resistive switching supplies for data processing. Nat. Rev. Mater. 5, 173–195 (2020).
Yoon, S. M., Warren, S. C. & Grzybowski, B. A. Storage {of electrical} data in metallic–organic-framework memristors. Angew. Chem. Int. Ed. 53, 4437–4441 (2014).
Zhou, H.-C., Lengthy, J. R. & Yaghi, O. M. Introduction to metallic–natural frameworks. Chem. Rev. 112, 673–674 (2012).
Yaghi, O. M. et al. Reticular synthesis and the design of latest supplies. Nature 423, 705–714 (2003).
Oh, J. & Yoon, S. M. Resistive reminiscence units based mostly on reticular supplies for electrical data storage. ACS Appl. Mater. Interfaces 13, 56777–56792 (2021).
Pan, L. et al. A resistance-switchable and ferroelectric metallic–natural framework. J. Am. Chem. Soc. 136, 17477–17483 (2014).
Yao, Z. et al. Simultaneous implementation of resistive switching and rectifying results in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 5, eaaw4515 (2019).
Park, M.-J. & Lee, J.-S. Zeolitic-imidazole framework skinny film-based versatile resistive switching reminiscence. RSC Adv. 7, 21045–21049 (2017).
Huang, X. et al. Coating two-dimensional nanomaterials with metallic–natural frameworks. ACS Nano 8, 8695–8701 (2014).
Zhao, L. et al. Nonvolatile electrical bistability behaviors noticed in Au/Ag nanoparticle-embedded MOFs and switching mechanisms. ACS Appl. Mater. Interfaces 11, 47073–47082 (2019).
Ding, G. et al. 2D metallic–natural framework nanosheets with time-dependent and multilevel memristive switching. Adv. Func. Mater. 29, 1806637 (2019).
Pan, L. et al. Steel-organic framework nanofilm for mechanically versatile data storage purposes. Adv. Func. Mater. 25, 2677–2685 (2015).
Wang, Z. et al. Resistive switching nanodevices based mostly on metallic–natural frameworks. ChemNanoMat 2, 67–73 (2016).
Ohara, H. et al. Layer-by-layer progress management of metallic–natural framework skinny movies assembled on polymer movies. ACS Appl. Mater. Interfaces 12, 50784–50792 (2020).
Yi, X. et al. Intrinsically stretchable resistive switching reminiscence enabled by combining a liquid metallic–based mostly gentle electrode and a metallic–natural framework insulator. Adv. Electron. Mater. 5, 1800655 (2019).
He, Y. et al. Encapsulating halometallates into 3-D lanthanide-viologen frameworks: controllable emissions, reversible thermochromism, photocurrent responses, and electrical bistability behaviors. Inorg. Chem. 58, 13862–13880 (2019).
Moreno-Moreno, M. et al. One-pot preparation of mechanically strong, clear, extremely conductive, and memristive metallic–natural ultrathin movie. ACS Nano 12, 10171–10177 (2018).
Liu, Y. et al. Alcohol-mediated resistance-switching conduct in metallic–natural framework-based digital units. Angew. Chem. Int. Ed. 55, 8884–8888 (2016).
Albano, L. G. S. et al. Ambipolar resistive switching in an ultrathin surface-supported metallic–natural framework vertical heterojunction. Nano Lett. 20, 1080–1088 (2020).
Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metallic–natural frameworks. Chem. Rev. 120, 8536–8580 (2020).
Liu, J. & Wöll, C. Floor-supported metallic–natural framework skinny movies: fabrication strategies, purposes, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).
McKinlay, A. C. et al. BioMOFs: metallic–natural frameworks for organic and medical purposes. Angew. Chem. Int. Ed. 49, 6260–6266 (2010).
Imaz, I. et al. Steel–biomolecule frameworks (MBioFs). Chem. Commun. 47, 7287–7302 (2011).
Cai, H., Huang, Y.-L. & Li, D. Organic metallic–natural frameworks: constructions, host–visitor chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2019).
Valle, J. D. et al. Spatiotemporal characterization of the field-induced insulator-to-metal transition. Science 373, 907–911 (2021).
Imada, M., Fujimori, A. & Tokura, Y. Steel-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Mott, N. F. The premise of the electron idea of metals, with particular reference to the transition metals. Proc. Phys. Soc. Lond. Sect. A 62, 416 (1949).
Mott, N. F. Steel-Insulator Transitions (Taylor & Francis, London, 1974).
Moore, R. G. et al. A surface-tailored, purely digital, Mott metal-to-insulator transition. Science 318, 615–619 (2007).
Sow, C. et al. Present-induced robust diamagnetism within the Mott insulator Ca2RuO4. Science 358, 1084–1087 (2017).
Bertinshaw, J. et al. Distinctive crystal construction of Ca2RuO4 within the present stabilized semimetallic state. Phys. Rev. Lett. 123, 137204 (2019).
Lee, D. et al. Isostructural metal-insulator transition in VO2. Science 362, 1037–1040 (2018).
Diaz Fleming, G. et al. Experimental and theoretical Raman and surface-enhanced Raman scattering research of cysteine. J. Raman Spec. 40, 632–638 (2009).
Minkov, V. S., Goryainov, S. V., Boldyreva, E. V. & Görbitz, C. H. Raman research of pressure-induced part transitions in crystals of orthorhombic and monoclinic polymorphs of L-cysteine: dynamics of the aspect chain. J. Raman Spec. 41, 1748–1758 (2010).
Maximoff, S. N. & Smit, B. Redox chemistry and metallic–insulator transitions intertwined in a nano-porous materials. Nat. Commun. 5, 4032 (2014).
Tominaka, S., Coudert, F.-X., Dao, T. D., Nagao, T. & Cheetham, A. Ok. Insulator-to-proton-conductor transition in a dense metallic–natural framework. J. Am. Chem. Soc. 137, 6428–6431 (2015).
Kon, Ok. et al. Electron-conductive metallic–natural framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): coexistence of microporosity and solid-state redox exercise. ACS Appl. Mater. Interfaces 13, 38188–38193 (2021).
Nagarajan, L. et al. A chemically pushed insulator–metallic transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 7, 391–398 (2008).
Tan, Ok. et al. Water interactions in metallic natural frameworks. CrystEngComm 17, 247–260 (2015).
Ferrer, P., da Silva, I., Rubio-Zuazo, J. & Castro, G. R. Synthesis and crystal construction of the novel metallic natural framework Zn(C3H5NO2S)2. Powder Diffr. 29, 366–370 (2014).
Rodríguez-Carvajal, J. Current advances in magnetic construction dedication by neutron powder diffraction. Phys. B Condens. Matter 192, 55–69 (1993).
Sindhu, P., Ananthram, Ok. S., Jain, A., Tarafder, Ok. & Ballav, N. Cost-transfer interface of insulating metal-organic frameworks with metallic conduction. Nat. Commun. 13, 7665 (2022).
Peng, X. et al. Commentary of formation and native constructions of metal-organic layers through complementary electron microscopy strategies. Nat. Commun. 13, 5197 (2022).
Tong, L. et al. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat. Commun. 13, 951 (2022).
Rana, S., Prasoon, A., Jha, P. Ok., Prathamshetti, A. & Ballav, N. Thermally pushed resistive switching in solution-processable skinny movies of coordination polymers. J. Phys. Chem. Lett. 8, 5008–5014 (2017).
Sindhu, P., Prasoon, A., Rana, S. & Ballav, N. Emergent interface in heterostructured skinny movies of Cu(II) and Cu(I) coordination polymers. J. Phys. Chem. Lett. 11, 6242–6248 (2020).
Dolgopolova, E. A. et al. Digital properties of bimetallic metallic–natural frameworks (MOFs): tailoring the density of digital states by means of MOF modularity. J. Am. Chem. Soc. 139, 5201–5209 (2017).
Zhou, Y. & Ramanathan, S. Mott reminiscence and neuromorphic units. Proc. IEEE 103, 1289–1310 (2015).
Bader, R. F. W. Atoms in Molecules: A Quantum Principle. (Clarendon Press, 1994).
Solar, L., Miyakai, T., Seki, S. & Dincă, M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metallic–natural framework with infinite (−Mn–S−)∞ chains and excessive intrinsic cost mobility. J. Am. Chem. Soc. 135, 8185–8188 (2013).
Pathak, A. et al. Integration of a (–Cu–S–)n airplane in a metallic–natural framework affords excessive electrical conductivity. Nat. Commun. 10, 1721 (2019).
Arnold, R., Azzam, W., Terfort, A. & Wöll, C. Preparation, modification, and crystallinity of aliphatic and fragrant carboxylic acid terminated self-assembled monolayers. Langmuir 18, 3980–3992 (2002).
Rana, S., Rajendra, R., Dhara, B., Jha, P. Ok. & Ballav, N. Extremely Hydrophobic and chemically rectifiable surface-anchored metal-organic framework thin-film units. Adv. Mater. Interfaces 3, 1500738 (2016).
Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, Ok. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Ebook of Normal Spectra for Identification of XPS Knowledge. (Perkin-Elmer, 1992).
Hanwell, M. D. et al. Avogadro: a complicated semantic chemical editor, visualization, and evaluation platform. J. Cheminform 4, 17 (2012).
Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).
Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band construction diagram paths based mostly on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).
Allen, M. P. & Tildesley, D. J. Pc Simulation of Liquids. (Oxford College Press, New York, 1991).
Hoover, W. G., Ladd, A. J. C. & Moran, B. Excessive-strain-rate plastic circulate studied through nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982).
Evans, D. J. Pc “experiment” for nonlinear thermodynamics of Couette circulate. J. Chem. Phys. 78, 3297–3302 (1983).
Pizzi, G., Volja, D., Kozinsky, B., Fornari, M. & Marzari, N. BoltzWann: a code for the analysis of thermoelectric and digital transport properties with a maximally-localized Wannier features foundation. Comput. Phys. Commun. 185, 422–429 (2014).
Mostofi, A. A. et al. wannier90: a instrument for acquiring maximally-localised Wannier features. Comput. Phys. Commun. 178, 685–699 (2008).
Henkelman, G., Arnaldsson, A. & Jónsson, H. A quick and strong algorithm for Bader decomposition of cost density. Comput. Mater. Sci. 36, 354–360 (2006).
Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader cost allocation. J. Comput. Chem. 28, 899–908 (2007).
Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. 21, 084204 (2009).