google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
18 C
New York
Tuesday, June 6, 2023

Insulator-to-metal-like transition in skinny movies of a organic metal-organic framework


  • Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular supplies towards reminiscence units. Science 279, 44–48 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Sawa, A. Resistive switching in transition metallic oxides. Mater. At the moment 11, 28–36 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Waser, R. & Aono, M. Nanoionics-based resistive switching reminiscences. Nat. Mater. 6, 833–840 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chua, L. O. The fourth aspect. Proc. IEEE 100, 1920–1927 (2012).

    Article 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching supplies for data processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yoon, S. M., Warren, S. C. & Grzybowski, B. A. Storage {of electrical} data in metallic–organic-framework memristors. Angew. Chem. Int. Ed. 53, 4437–4441 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, H.-C., Lengthy, J. R. & Yaghi, O. M. Introduction to metallic–natural frameworks. Chem. Rev. 112, 673–674 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yaghi, O. M. et al. Reticular synthesis and the design of latest supplies. Nature 423, 705–714 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oh, J. & Yoon, S. M. Resistive reminiscence units based mostly on reticular supplies for electrical data storage. ACS Appl. Mater. Interfaces 13, 56777–56792 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pan, L. et al. A resistance-switchable and ferroelectric metallic–natural framework. J. Am. Chem. Soc. 136, 17477–17483 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yao, Z. et al. Simultaneous implementation of resistive switching and rectifying results in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 5, eaaw4515 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, M.-J. & Lee, J.-S. Zeolitic-imidazole framework skinny film-based versatile resistive switching reminiscence. RSC Adv. 7, 21045–21049 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. et al. Coating two-dimensional nanomaterials with metallic–natural frameworks. ACS Nano 8, 8695–8701 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, L. et al. Nonvolatile electrical bistability behaviors noticed in Au/Ag nanoparticle-embedded MOFs and switching mechanisms. ACS Appl. Mater. Interfaces 11, 47073–47082 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ding, G. et al. 2D metallic–natural framework nanosheets with time-dependent and multilevel memristive switching. Adv. Func. Mater. 29, 1806637 (2019).

    Article 

    Google Scholar
     

  • Pan, L. et al. Steel-organic framework nanofilm for mechanically versatile data storage purposes. Adv. Func. Mater. 25, 2677–2685 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Z. et al. Resistive switching nanodevices based mostly on metallic–natural frameworks. ChemNanoMat 2, 67–73 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Ohara, H. et al. Layer-by-layer progress management of metallic–natural framework skinny movies assembled on polymer movies. ACS Appl. Mater. Interfaces 12, 50784–50792 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yi, X. et al. Intrinsically stretchable resistive switching reminiscence enabled by combining a liquid metallic–based mostly gentle electrode and a metallic–natural framework insulator. Adv. Electron. Mater. 5, 1800655 (2019).

    Article 

    Google Scholar
     

  • He, Y. et al. Encapsulating halometallates into 3-D lanthanide-viologen frameworks: controllable emissions, reversible thermochromism, photocurrent responses, and electrical bistability behaviors. Inorg. Chem. 58, 13862–13880 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Moreno-Moreno, M. et al. One-pot preparation of mechanically strong, clear, extremely conductive, and memristive metallic–natural ultrathin movie. ACS Nano 12, 10171–10177 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, Y. et al. Alcohol-mediated resistance-switching conduct in metallic–natural framework-based digital units. Angew. Chem. Int. Ed. 55, 8884–8888 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Albano, L. G. S. et al. Ambipolar resistive switching in an ultrathin surface-supported metallic–natural framework vertical heterojunction. Nano Lett. 20, 1080–1088 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Xie, L. S., Skorupskii, G. & Dincă, M. Electrically conductive metallic–natural frameworks. Chem. Rev. 120, 8536–8580 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. & Wöll, C. Floor-supported metallic–natural framework skinny movies: fabrication strategies, purposes, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McKinlay, A. C. et al. BioMOFs: metallic–natural frameworks for organic and medical purposes. Angew. Chem. Int. Ed. 49, 6260–6266 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Imaz, I. et al. Steel–biomolecule frameworks (MBioFs). Chem. Commun. 47, 7287–7302 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cai, H., Huang, Y.-L. & Li, D. Organic metallic–natural frameworks: constructions, host–visitor chemistry and bio-applications. Coord. Chem. Rev. 378, 207–221 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Valle, J. D. et al. Spatiotemporal characterization of the field-induced insulator-to-metal transition. Science 373, 907–911 (2021).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Imada, M., Fujimori, A. & Tokura, Y. Steel-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Mott, N. F. The premise of the electron idea of metals, with particular reference to the transition metals. Proc. Phys. Soc. Lond. Sect. A 62, 416 (1949).

    Article 
    ADS 

    Google Scholar
     

  • Mott, N. F. Steel-Insulator Transitions (Taylor & Francis, London, 1974).

  • Moore, R. G. et al. A surface-tailored, purely digital, Mott metal-to-insulator transition. Science 318, 615–619 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sow, C. et al. Present-induced robust diamagnetism within the Mott insulator Ca2RuO4. Science 358, 1084–1087 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bertinshaw, J. et al. Distinctive crystal construction of Ca2RuO4 within the present stabilized semimetallic state. Phys. Rev. Lett. 123, 137204 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, D. et al. Isostructural metal-insulator transition in VO2. Science 362, 1037–1040 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Diaz Fleming, G. et al. Experimental and theoretical Raman and surface-enhanced Raman scattering research of cysteine. J. Raman Spec. 40, 632–638 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Minkov, V. S., Goryainov, S. V., Boldyreva, E. V. & Görbitz, C. H. Raman research of pressure-induced part transitions in crystals of orthorhombic and monoclinic polymorphs of L-cysteine: dynamics of the aspect chain. J. Raman Spec. 41, 1748–1758 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Maximoff, S. N. & Smit, B. Redox chemistry and metallic–insulator transitions intertwined in a nano-porous materials. Nat. Commun. 5, 4032 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tominaka, S., Coudert, F.-X., Dao, T. D., Nagao, T. & Cheetham, A. Ok. Insulator-to-proton-conductor transition in a dense metallic–natural framework. J. Am. Chem. Soc. 137, 6428–6431 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kon, Ok. et al. Electron-conductive metallic–natural framework, Fe(dhbq)(dhbq = 2,5-Dihydroxy-1,4-benzoquinone): coexistence of microporosity and solid-state redox exercise. ACS Appl. Mater. Interfaces 13, 38188–38193 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagarajan, L. et al. A chemically pushed insulator–metallic transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 7, 391–398 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Tan, Ok. et al. Water interactions in metallic natural frameworks. CrystEngComm 17, 247–260 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ferrer, P., da Silva, I., Rubio-Zuazo, J. & Castro, G. R. Synthesis and crystal construction of the novel metallic natural framework Zn(C3H5NO2S)2. Powder Diffr. 29, 366–370 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Rodríguez-Carvajal, J. Current advances in magnetic construction dedication by neutron powder diffraction. Phys. B Condens. Matter 192, 55–69 (1993).

    Article 
    ADS 

    Google Scholar
     

  • Sindhu, P., Ananthram, Ok. S., Jain, A., Tarafder, Ok. & Ballav, N. Cost-transfer interface of insulating metal-organic frameworks with metallic conduction. Nat. Commun. 13, 7665 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, X. et al. Commentary of formation and native constructions of metal-organic layers through complementary electron microscopy strategies. Nat. Commun. 13, 5197 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tong, L. et al. Atomically unveiling the structure-activity relationship of biomacromolecule-metal-organic frameworks symbiotic crystal. Nat. Commun. 13, 951 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rana, S., Prasoon, A., Jha, P. Ok., Prathamshetti, A. & Ballav, N. Thermally pushed resistive switching in solution-processable skinny movies of coordination polymers. J. Phys. Chem. Lett. 8, 5008–5014 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindhu, P., Prasoon, A., Rana, S. & Ballav, N. Emergent interface in heterostructured skinny movies of Cu(II) and Cu(I) coordination polymers. J. Phys. Chem. Lett. 11, 6242–6248 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dolgopolova, E. A. et al. Digital properties of bimetallic metallic–natural frameworks (MOFs): tailoring the density of digital states by means of MOF modularity. J. Am. Chem. Soc. 139, 5201–5209 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. & Ramanathan, S. Mott reminiscence and neuromorphic units. Proc. IEEE 103, 1289–1310 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Bader, R. F. W. Atoms in Molecules: A Quantum Principle. (Clarendon Press, 1994).

  • Solar, L., Miyakai, T., Seki, S. & Dincă, M. Mn2(2,5-disulfhydrylbenzene-1,4-dicarboxylate): a microporous metallic–natural framework with infinite (−Mn–S−)∞ chains and excessive intrinsic cost mobility. J. Am. Chem. Soc. 135, 8185–8188 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pathak, A. et al. Integration of a (–Cu–S–)n airplane in a metallic–natural framework affords excessive electrical conductivity. Nat. Commun. 10, 1721 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arnold, R., Azzam, W., Terfort, A. & Wöll, C. Preparation, modification, and crystallinity of aliphatic and fragrant carboxylic acid terminated self-assembled monolayers. Langmuir 18, 3980–3992 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Rana, S., Rajendra, R., Dhara, B., Jha, P. Ok. & Ballav, N. Extremely Hydrophobic and chemically rectifiable surface-anchored metal-organic framework thin-film units. Adv. Mater. Interfaces 3, 1500738 (2016).

    Article 

    Google Scholar
     

  • Moulder, J. F., Stickle, W. F., Sobol, P. E. & Bomben, Ok. D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Ebook of Normal Spectra for Identification of XPS Knowledge. (Perkin-Elmer, 1992).

  • Hanwell, M. D. et al. Avogadro: a complicated semantic chemical editor, visualization, and evaluation platform. J. Cheminform 4, 17 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Environment friendly iterative schemes for ab initio total-energy calculations utilizing a plane-wave foundation set. Phys. Rev. B 54, 11169–11186 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Perdew, J. P., Burke, Ok. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hinuma, Y., Pizzi, G., Kumagai, Y., Oba, F. & Tanaka, I. Band construction diagram paths based mostly on crystallography. Comput. Mater. Sci. 128, 140–184 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Allen, M. P. & Tildesley, D. J. Pc Simulation of Liquids. (Oxford College Press, New York, 1991).

  • Hoover, W. G., Ladd, A. J. C. & Moran, B. Excessive-strain-rate plastic circulate studied through nonequilibrium molecular dynamics. Phys. Rev. Lett. 48, 1818–1820 (1982).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Evans, D. J. Pc “experiment” for nonlinear thermodynamics of Couette circulate. J. Chem. Phys. 78, 3297–3302 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pizzi, G., Volja, D., Kozinsky, B., Fornari, M. & Marzari, N. BoltzWann: a code for the analysis of thermoelectric and digital transport properties with a maximally-localized Wannier features foundation. Comput. Phys. Commun. 185, 422–429 (2014).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Mostofi, A. A. et al. wannier90: a instrument for acquiring maximally-localised Wannier features. Comput. Phys. Commun. 178, 685–699 (2008).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Henkelman, G., Arnaldsson, A. & Jónsson, H. A quick and strong algorithm for Bader decomposition of cost density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article 

    Google Scholar
     

  • Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid-based algorithm for Bader cost allocation. J. Comput. Chem. 28, 899–908 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader evaluation algorithm with out lattice bias. J. Phys. 21, 084204 (2009).

    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles