google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
18.1 C
New York
Saturday, May 27, 2023

Intermolecular trans-bis-silylation of terminal alkynes


  • Trost, B. M. & Li, C.-J. Trendy Alkyne Chemistry: Catalytic and Atom-Financial Transformations (Wiley, 2014).

    Guide 

    Google Scholar
     

  • Stang, P. J. & Diederich, F. Trendy Acetylene Chemistry (Wiley, 2008).

  • Schobert, H. Manufacturing of acetylene and acetylene-based chemical compounds from coal. Chem. Rev. 114, 1743–1760 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Trotus, I.-T., Zimmermann, T. & Schuth, F. Catalytic reactions of acetylene: a feedstock for the chemical trade revisited. Chem. Rev. 114, 1761–1782 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chinchilla, R. & Najera, C. Chemical substances from alkynes with palladium catalysts. Chem. Rev. 114, 1783–1826 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beletskaya, I. & Moberg, C. Component–factor addition to alkynes catalyzed by the group 10 metals. Chem. Rev. 99, 3435–3461 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suginome, M. & Ito, Y. Transition-metal-catalyzed additions of silicon–silicon and silicon–heteroatom bonds to unsaturated natural molecules. Chem. Rev. 100, 3221–3256 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beletskaya, I. & Moberg, C. Component–factor additions to unsaturated carbon–carbon bonds catalyzed by transition metallic complexes. Chem. Rev. 106, 2320–2354 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Feng, J. J., Mao, W., Zhang, L. & Oestreich, M. Activation of the Si-B interelement bond associated to catalysis. Chem. Soc. Rev. 50, 2010–2073 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ansell, M. B., Navarro, O. & Spencer, J. Transition metallic catalyzed factor–elementʹ additions to alkynes. Coordin. Chem. Rev. 336, 54–77 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Suginome, M., Matsuda, T., Ohmura, T., Seki, A. & Murakami, M. in Complete Organometallic Chemistry III Vol. 10 (eds Mingos, D. M. P. & Crabtree, R.) 725–787 (Elsevier, 2007).

  • Negishi, E., Wang, G., Rao, H. & Xu, Z. Alkyne elementometalation-Pd-catalyzed cross-coupling. Towards synthesis of all conceivable sorts of acyclic alkenes in excessive yields, effectively, selectively, economically, and safely: ‘inexperienced’ means. J. Org. Chem. 75, 3151–3182 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mu, Y., Nguyen, T. T., Koh, M. J., Schrock, R. R. & Hoveyda, A. H. E– and Z-, di- and tri-substituted alkenyl nitriles by way of catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prunet, J. Progress in metathesis by way of pure product synthesis. Eur. J. Org. Chem. 2011, 3634–3647 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Eissen, M. & Lenoir, D. Mass effectivity of alkene syntheses with tri- and tetrasubstituted double bonds. ACS Maintain. Chem. Eng. 5, 10459–10473 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Liu, C.-F. et al. Olefin functionalization/isomerization permits stereoselective alkene synthesis. Nat. Catal. 4, 674–683 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bottoni, A., Higueruelo, A. P. & Miscione, G. P. A DFT computational research of the bis-silylation response of acetylene catalyzed by palladium complexes. J. Am. Chem. Soc. 124, 5506–5513 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hada, M. et al. Theoretical research on the response mechanism and regioselectivity of silastannation of acetylenes with a palladium catalyst. J. Am. Chem. Soc. 116, 8754–8765 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Murakami, M., Yoshida, T., Kawanami, S. & Ito, Y. Synthesis, construction, and response of the primary thermally steady cis-(silyl)(stannyl)palladium(II) advanced. J. Am. Chem. Soc. 117, 6408–6409 (1995).

    Article 
    CAS 

    Google Scholar
     

  • Nagashima, Y., Hirano, Okay., Takita, R. & Uchiyama, M. Trans-diborylation of alkynes: pseudo-intramolecular technique using a propargylic alcohol unit. J. Am. Chem. Soc. 136, 8532–8535 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suzuki, Okay., Sugihara, N., Nishimoto, Y. & Yasuda, M. anti-Selective borylstannylation of alkynes with (o-phenylenediaminato)borylstannanes by a radical mechanism. Angew. Chem. Int. Ed. 61, e202201883 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Romain, E. et al. Trans-selective radical silylzincation of ynamides. Angew. Chem., Int. Ed. 53, 11333–11337 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ohmura, T., Oshima, Okay. & Suginome, M. Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary entry to stereo-defined trisubstituted alkenes. Chem. Commun. 2008, 1416–1418 (2008).

    Article 

    Google Scholar
     

  • Nagao, Okay., Ohmiya, H. & Sawamura, M. Anti-selective vicinal silaboration and diboration of alkynoates by way of phosphine organocatalysis. Org. Lett. 17, 1304–1307 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hiyama, T. & Oestreich, M. Organosilicon Chemistry: Novel Approaches and Reactions (Wiley-VCH, 2019).

    Guide 

    Google Scholar
     

  • Jones, R. G., Ando, W. & Chojnowski, J. Silicon-Containing Polymers (Kluwer Tutorial Publishers, 2000).

    Guide 

    Google Scholar
     

  • Zelisko, P. M. Bio-Impressed Silicon-Primarily based Supplies (Springer, 2014).

  • Franz, A. Okay. & Wilson, S. O. Organosilicon molecules with medicinal purposes. J. Med. Chem. 56, 388–405 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramesh, R. & Reddy, D. S. Quest for novel chemical entities by way of incorporation of silicon in drug scaffolds. J. Med. Chem. 61, 3779–3798 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Manganese-catalysed divergent silylation of alkenes. Nat. Chem. 13, 182–190 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Toutov, A. A. et al. Silylation of C−H bonds in fragrant heterocycles by an earth-abundant metallic catalyst. Nature 518, 80–84 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C−H silylation of arenes with excessive steric regiocontrol. Science 343, 853–857 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes utilizing an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nat. Chem. 8, 157–161 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Suginome, M. & Ito, Y. Activation of silicon–silicon σ bonds by transition-metal complexes: synthesis and catalysis of recent organosilyl transition-metal complexes. J. Chem. Soc., Dalton Trans. 1998, 1925–1934 (1998).

    Article 

    Google Scholar
     

  • Sakurai, H., Kamiyama, Y. & Nakadaira, Y. Novel [σ+π] reactions of hexaorganodisilanes with acetylenes catalyzed by palladium complexes. J. Am. Chem. Soc. 97, 931–932 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Ito, Y., Suginome, M. & Murakami, M. Palladium(II) acetate-tert-alkyl isocyanide as a extremely environment friendly catalyst for the inter- and intramolecular bis-silylation of carbon-carbon triple bonds. J. Org. Chem. 56, 1948–1951 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Ozawa, F., Sugawara, M. & Hayashi, T. A brand new reactive system for catalytic bis-silylation of acetylenes and olefins. Organometallics 13, 3237–3243 (1994).

    Article 
    CAS 

    Google Scholar
     

  • Braunschweig, H. & Kupfer, T. Transition-metal-catalyzed bis-silylation of propyne by [2]chromoarenophanes. Organometallics 26, 4634–4638 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ansell, M. B., Roberts, D. E., Cloke, F. G. N., Navarro, O. & Spencer, J. Synthesis of an [(NHC)2Pd(SiMe3)2] advanced and catalytic cis-bis(silyl)ations of alkynes with unactivated disilanes. Angew. Chem. Int. Ed. 54, 5578–5582 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, M., Gaumont, A. C., Durandetti, M. & Maddaluno, J. Direct syn addition of two silicon atoms to a C≡C triple bond by Si−Si bond activation: entry to reactive disilylated olefins. Angew. Chem. Int. Ed. 56, 2464–2468 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Xiao, P., Cao, Y., Gui, Y., Gao, L. & Track, Z. Me3Si–SiMe2[oCON(iPr)2–C6H4]: an unsymmetrical disilane reagent for regio- and stereoselective bis-silylation of alkynes. Angew. Chem. Int. Ed. 57, 4769–4773 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Matsuda, T. & Ichioka, Y. Rhodium-catalysed intramolecular trans-bis-silylation of alkynes to synthesise 3-silyl-1-benzosiloles. Org. Biomol. Chem. 10, 3175–3177 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Naka, A., Shimomura, N. & Kobayashi, H. Synthesis of pyridine-fused siloles by palladium-catalyzed intramolecular bis-silylation. ACS Omega 7, 30369–30375 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, T. et al. Rhodium catalyzed intermolecular trans-disilylation of alkynones with unactivated disilanes. Angew. Chem. Int. Ed. 57, 10868–10872 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Wang, X.-C., Ju, C.-W. & Zhao, D. Bis-silylation of inside alkynes enabled by Ni(0) catalysis. Nat. Commun. 12, 68 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mei, J., Leung, N. L. C., Kwok, R. T. Okay., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: collectively we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zafrani, Y. et al. Difluoromethyl bioisostere: inspecting the ‘lipophilic hydrogen bond donor’ idea. J. Med. Chem. 60, 797–804 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L.-H. et al. The artificial compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-α manufacturing with antitumor exercise. Most cancers Res. 66, 951–959 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ruchelman, A. L. et al. 1,1-Diarylalkenes as anticancer brokers: twin inhibitors of tubulin polymerization and phosphodiesterase 4. Bioorg. Med. Chem. 19, 6356–6374 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kupfer, D. & Bulger, W. H. Inactivation of the uterine estrogen receptor binding of estradiol throughout P-450 catalyzed metabolism of chlorotrianisene (TACE). Hypothesis that TACE antiestrogenic exercise entails covalent binding to the estrogen receptor. FEBS Lett. 261, 59–62 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bollag, W. & Ott, F. Inhibition of rat mammary carcinogenesis by an arotinoid with no polar finish group. Eur. J. Most cancers Clin. Oncol. 23, 131–135 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerrero, P. G. Jr. et al. Synthesis of arotinoid acid and temarotene utilizing combined (Z)-1,2-bis(organylchalcogene)-1-alkene as precursor. Tetrahedron Lett. 53, 5302–5305 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H.-C., Wu, Y., Yu, Y. & Wang, P. Pd-catalyzed isomerization of alkenes. Chin. J. Org. Chem. 42, 742–757 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling know-how in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the head of atom financial system. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Albéniz, A. C., Espinet, P., López-Fernández, R. & Sen, A. A warning on the usage of radical traps as a take a look at for radical mechanisms: they react with palladium hydrido complexes. J. Am. Chem. Soc. 124, 11278–11279 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Ozawa, F. & Kamite, J. Mechanistic research on the insertion of phenylacetylene into cis-bis(silyl)platinum(II) complexes. Organometallics 17, 5630–5639 (1998).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles