Trost, B. M. & Li, C.-J. Trendy Alkyne Chemistry: Catalytic and Atom-Financial Transformations (Wiley, 2014).
Stang, P. J. & Diederich, F. Trendy Acetylene Chemistry (Wiley, 2008).
Schobert, H. Manufacturing of acetylene and acetylene-based chemical compounds from coal. Chem. Rev. 114, 1743–1760 (2014).
Trotus, I.-T., Zimmermann, T. & Schuth, F. Catalytic reactions of acetylene: a feedstock for the chemical trade revisited. Chem. Rev. 114, 1761–1782 (2014).
Chinchilla, R. & Najera, C. Chemical substances from alkynes with palladium catalysts. Chem. Rev. 114, 1783–1826 (2014).
Beletskaya, I. & Moberg, C. Component–factor addition to alkynes catalyzed by the group 10 metals. Chem. Rev. 99, 3435–3461 (1999).
Suginome, M. & Ito, Y. Transition-metal-catalyzed additions of silicon–silicon and silicon–heteroatom bonds to unsaturated natural molecules. Chem. Rev. 100, 3221–3256 (2000).
Beletskaya, I. & Moberg, C. Component–factor additions to unsaturated carbon–carbon bonds catalyzed by transition metallic complexes. Chem. Rev. 106, 2320–2354 (2006).
Feng, J. J., Mao, W., Zhang, L. & Oestreich, M. Activation of the Si-B interelement bond associated to catalysis. Chem. Soc. Rev. 50, 2010–2073 (2021).
Ansell, M. B., Navarro, O. & Spencer, J. Transition metallic catalyzed factor–elementʹ additions to alkynes. Coordin. Chem. Rev. 336, 54–77 (2017).
Suginome, M., Matsuda, T., Ohmura, T., Seki, A. & Murakami, M. in Complete Organometallic Chemistry III Vol. 10 (eds Mingos, D. M. P. & Crabtree, R.) 725–787 (Elsevier, 2007).
Negishi, E., Wang, G., Rao, H. & Xu, Z. Alkyne elementometalation-Pd-catalyzed cross-coupling. Towards synthesis of all conceivable sorts of acyclic alkenes in excessive yields, effectively, selectively, economically, and safely: ‘inexperienced’ means. J. Org. Chem. 75, 3151–3182 (2010).
Flynn, A. B. & Ogilvie, W. W. Stereocontrolled synthesis of tetrasubstituted olefins. Chem. Rev. 107, 4698–4745 (2007).
Mu, Y., Nguyen, T. T., Koh, M. J., Schrock, R. R. & Hoveyda, A. H. E– and Z-, di- and tri-substituted alkenyl nitriles by way of catalytic cross-metathesis. Nat. Chem. 11, 478–487 (2019).
Prunet, J. Progress in metathesis by way of pure product synthesis. Eur. J. Org. Chem. 2011, 3634–3647 (2011).
Eissen, M. & Lenoir, D. Mass effectivity of alkene syntheses with tri- and tetrasubstituted double bonds. ACS Maintain. Chem. Eng. 5, 10459–10473 (2017).
Liu, C.-F. et al. Olefin functionalization/isomerization permits stereoselective alkene synthesis. Nat. Catal. 4, 674–683 (2021).
Bottoni, A., Higueruelo, A. P. & Miscione, G. P. A DFT computational research of the bis-silylation response of acetylene catalyzed by palladium complexes. J. Am. Chem. Soc. 124, 5506–5513 (2002).
Hada, M. et al. Theoretical research on the response mechanism and regioselectivity of silastannation of acetylenes with a palladium catalyst. J. Am. Chem. Soc. 116, 8754–8765 (1994).
Murakami, M., Yoshida, T., Kawanami, S. & Ito, Y. Synthesis, construction, and response of the primary thermally steady cis-(silyl)(stannyl)palladium(II) advanced. J. Am. Chem. Soc. 117, 6408–6409 (1995).
Nagashima, Y., Hirano, Okay., Takita, R. & Uchiyama, M. Trans-diborylation of alkynes: pseudo-intramolecular technique using a propargylic alcohol unit. J. Am. Chem. Soc. 136, 8532–8535 (2014).
Suzuki, Okay., Sugihara, N., Nishimoto, Y. & Yasuda, M. anti-Selective borylstannylation of alkynes with (o-phenylenediaminato)borylstannanes by a radical mechanism. Angew. Chem. Int. Ed. 61, e202201883 (2022).
Romain, E. et al. Trans-selective radical silylzincation of ynamides. Angew. Chem., Int. Ed. 53, 11333–11337 (2014).
Ohmura, T., Oshima, Okay. & Suginome, M. Palladium-catalysed cis- and trans-silaboration of terminal alkynes: complementary entry to stereo-defined trisubstituted alkenes. Chem. Commun. 2008, 1416–1418 (2008).
Nagao, Okay., Ohmiya, H. & Sawamura, M. Anti-selective vicinal silaboration and diboration of alkynoates by way of phosphine organocatalysis. Org. Lett. 17, 1304–1307 (2015).
Hiyama, T. & Oestreich, M. Organosilicon Chemistry: Novel Approaches and Reactions (Wiley-VCH, 2019).
Jones, R. G., Ando, W. & Chojnowski, J. Silicon-Containing Polymers (Kluwer Tutorial Publishers, 2000).
Zelisko, P. M. Bio-Impressed Silicon-Primarily based Supplies (Springer, 2014).
Franz, A. Okay. & Wilson, S. O. Organosilicon molecules with medicinal purposes. J. Med. Chem. 56, 388–405 (2013).
Ramesh, R. & Reddy, D. S. Quest for novel chemical entities by way of incorporation of silicon in drug scaffolds. J. Med. Chem. 61, 3779–3798 (2018).
Dong, J. et al. Manganese-catalysed divergent silylation of alkenes. Nat. Chem. 13, 182–190 (2021).
Toutov, A. A. et al. Silylation of C−H bonds in fragrant heterocycles by an earth-abundant metallic catalyst. Nature 518, 80–84 (2015).
Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C−H silylation of arenes with excessive steric regiocontrol. Science 343, 853–857 (2014).
Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes utilizing an iridium–iron-catalysed tandem dehydrogenation–isomerization–hydrosilylation. Nat. Chem. 8, 157–161 (2016).
Suginome, M. & Ito, Y. Activation of silicon–silicon σ bonds by transition-metal complexes: synthesis and catalysis of recent organosilyl transition-metal complexes. J. Chem. Soc., Dalton Trans. 1998, 1925–1934 (1998).
Sakurai, H., Kamiyama, Y. & Nakadaira, Y. Novel [σ+π] reactions of hexaorganodisilanes with acetylenes catalyzed by palladium complexes. J. Am. Chem. Soc. 97, 931–932 (1975).
Ito, Y., Suginome, M. & Murakami, M. Palladium(II) acetate-tert-alkyl isocyanide as a extremely environment friendly catalyst for the inter- and intramolecular bis-silylation of carbon-carbon triple bonds. J. Org. Chem. 56, 1948–1951 (1991).
Ozawa, F., Sugawara, M. & Hayashi, T. A brand new reactive system for catalytic bis-silylation of acetylenes and olefins. Organometallics 13, 3237–3243 (1994).
Braunschweig, H. & Kupfer, T. Transition-metal-catalyzed bis-silylation of propyne by [2]chromoarenophanes. Organometallics 26, 4634–4638 (2007).
Ansell, M. B., Roberts, D. E., Cloke, F. G. N., Navarro, O. & Spencer, J. Synthesis of an [(NHC)2Pd(SiMe3)2] advanced and catalytic cis-bis(silyl)ations of alkynes with unactivated disilanes. Angew. Chem. Int. Ed. 54, 5578–5582 (2015).
Ahmad, M., Gaumont, A. C., Durandetti, M. & Maddaluno, J. Direct syn addition of two silicon atoms to a C≡C triple bond by Si−Si bond activation: entry to reactive disilylated olefins. Angew. Chem. Int. Ed. 56, 2464–2468 (2017).
Xiao, P., Cao, Y., Gui, Y., Gao, L. & Track, Z. Me3Si–SiMe2[oCON(iPr)2–C6H4]: an unsymmetrical disilane reagent for regio- and stereoselective bis-silylation of alkynes. Angew. Chem. Int. Ed. 57, 4769–4773 (2018).
Matsuda, T. & Ichioka, Y. Rhodium-catalysed intramolecular trans-bis-silylation of alkynes to synthesise 3-silyl-1-benzosiloles. Org. Biomol. Chem. 10, 3175–3177 (2012).
Naka, A., Shimomura, N. & Kobayashi, H. Synthesis of pyridine-fused siloles by palladium-catalyzed intramolecular bis-silylation. ACS Omega 7, 30369–30375 (2022).
He, T. et al. Rhodium catalyzed intermolecular trans-disilylation of alkynones with unactivated disilanes. Angew. Chem. Int. Ed. 57, 10868–10872 (2018).
Zhang, Y., Wang, X.-C., Ju, C.-W. & Zhao, D. Bis-silylation of inside alkynes enabled by Ni(0) catalysis. Nat. Commun. 12, 68 (2021).
Mei, J., Leung, N. L. C., Kwok, R. T. Okay., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: collectively we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).
Zafrani, Y. et al. Difluoromethyl bioisostere: inspecting the ‘lipophilic hydrogen bond donor’ idea. J. Med. Chem. 60, 797–804 (2017).
Zhang, L.-H. et al. The artificial compound CC-5079 is a potent inhibitor of tubulin polymerization and tumor necrosis factor-α manufacturing with antitumor exercise. Most cancers Res. 66, 951–959 (2006).
Ruchelman, A. L. et al. 1,1-Diarylalkenes as anticancer brokers: twin inhibitors of tubulin polymerization and phosphodiesterase 4. Bioorg. Med. Chem. 19, 6356–6374 (2011).
Kupfer, D. & Bulger, W. H. Inactivation of the uterine estrogen receptor binding of estradiol throughout P-450 catalyzed metabolism of chlorotrianisene (TACE). Hypothesis that TACE antiestrogenic exercise entails covalent binding to the estrogen receptor. FEBS Lett. 261, 59–62 (1990).
Bollag, W. & Ott, F. Inhibition of rat mammary carcinogenesis by an arotinoid with no polar finish group. Eur. J. Most cancers Clin. Oncol. 23, 131–135 (1987).
Guerrero, P. G. Jr. et al. Synthesis of arotinoid acid and temarotene utilizing combined (Z)-1,2-bis(organylchalcogene)-1-alkene as precursor. Tetrahedron Lett. 53, 5302–5305 (2012).
Chen, H.-C., Wu, Y., Yu, Y. & Wang, P. Pd-catalyzed isomerization of alkenes. Chin. J. Org. Chem. 42, 742–757 (2022).
Fiorito, D., Scaringi, S. & Mazet, C. Transition metal-catalyzed alkene isomerization as an enabling know-how in tandem, sequential and domino processes. Chem. Soc. Rev. 50, 1391–1406 (2021).
Molloy, J. J., Morack, T. & Gilmour, R. Positional and geometrical isomerisation of alkenes: the head of atom financial system. Angew. Chem. Int. Ed. 58, 13654–13664 (2019).
Albéniz, A. C., Espinet, P., López-Fernández, R. & Sen, A. A warning on the usage of radical traps as a take a look at for radical mechanisms: they react with palladium hydrido complexes. J. Am. Chem. Soc. 124, 11278–11279 (2002).
Ozawa, F. & Kamite, J. Mechanistic research on the insertion of phenylacetylene into cis-bis(silyl)platinum(II) complexes. Organometallics 17, 5630–5639 (1998).