Fortunato, E. et al. Optoelectronic gadgets from bacterial nanocellulose. In Bacterial Nanocellulose: From Biotechnology to Bio-Financial system 179–197 (Elsevier, 2016). https://doi.org/10.1016/B978-0-444-63458-0.00011-1.
Cowie, J., Bilek, E. M., Wegner, T. H. & Shatkin, J. A. Market projections of cellulose nanomaterial-enabled merchandise – Half 2: Quantity estimates. TAPPI J. 13, 57–69 (2014).
Klemm, D. et al. Nanocellulose as a pure supply for groundbreaking purposes in supplies science: At present’s state. Mater. At present 21, 720–748 (2018).
Isogai, A. Rising nanocellulose applied sciences: Latest developments. Adv. Mater. 33, 2000630 (2021).
Phanthong, P. et al. Nanocellulose: Extraction and utility. Carbon Resour. Convers. 1, 32–43 (2018).
Pires, J. R. A., Souza, V. G. L. & Fernando, A. L. Valorization of vitality crops as a supply for nanocellulose manufacturing–present information and future prospects. Ind. Crops Prod. 140, 111642 (2019).
Salimi, S., Sotudeh-Gharebagh, R., Zarghami, R., Chan, S. Y. & Yuen, Okay. H. Manufacturing of nanocellulose and its purposes in drug supply: A important assessment. ACS Maintain. Chem. Eng. 7, 15800–15827 (2019).
Zinge, C. & Kandasubramanian, B. Nanocellulose primarily based biodegradable polymers. Eur. Polym. J. 133, 109758 (2020).
Dhali, Okay., Ghasemlou, M., Daver, F., Cass, P. & Adhikari, B. A assessment of nanocellulose as a brand new materials in direction of environmental sustainability. Sci. Whole Environ. 775, 145871 (2021).
Picot-Allain, M. C. N. & Emmambux, M. N. Isolation, characterization, and utility of nanocellulose from agro-industrial by-products: A assessment. Meals Rev. Int. 1, 1–29 (2021).
Trache, D. et al. Nanocellulose: From fundamentals to superior purposes. Entrance. Chem. 8, 392 (2020).
Mehanny, S. et al. Extraction and characterization of nanocellulose from three forms of palm residues. J. Mater. Res. Technol. 10, 526–537 (2021).
Nang An, V. et al. Extraction of excessive crystalline nanocellulose from biorenewable sources of Vietnamese agricultural wastes. J. Polym. Environ. 28, 1465–1474 (2020).
Gond, R. Okay., Gupta, M. Okay. & Jawaid, M. Extraction of nanocellulose from sugarcane bagasse and its characterization for potential purposes. Polym. Compos. 42, 5400–5412 (2021).
Thomas, B. et al. Nanocellulose, a flexible inexperienced platform: From biosources to supplies and their purposes. Chem. Rev. 118, 11575–11625 (2018).
Kumar, V., Pathak, P. & Bhardwaj, N. Okay. Waste paper: An underutilized however promising supply for nanocellulose mining. Waste Manag. 102, 281–303 (2020).
Nandi, S. & Guha, P. A assessment on preparation and properties of cellulose nanocrystal-incorporated pure biopolymer. J. Packag. Technol. Res. 2, 149–166 (2018).
Trache, D., Hussin, M. H., Haafiz, M. Okay. M. & Thakur, V. Okay. Latest progress in cellulose nanocrystals: Sources and manufacturing. Nanoscale 9, 1763–1786 (2017).
Trache, D. et al. Microcrystalline cellulose: Isolation, characterization and bio-composites utility—A assessment. Int. J. Biol. Macromol. 93, 789–804 (2016).
Trache, D. Nanocellulose as a promising sustainable materials for biomedical purposes. AIMS Mater. Sci 5, 201–205 (2018).
Trache, D. Microcrystalline cellulose and associated polymer composites: Synthesis, characterization and properties. Handb. Compos. from Renew. Mater. Struct. Chem. 1, 61–92 (2016).
Nakagaito, A. N. & Yano, H. The impact of morphological modifications from pulp fiber in direction of nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber primarily based composites. Appl. Phys. A Mater. Sci. Course of. 78, 547–552 (2004).
Bhattacharya, D., Germinario, L. T. & Winter, W. T. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2007.12.005 (2008).
Alemdar, A. & Sain, M. Isolation and characterization of nanofibers from agricultural residues—Wheat straw and soy hulls. Bioresour. Technol. 99, 1664–1671 (2008).
Abe, Okay. & Yano, H. Comparability of the traits of cellulose microfibril aggregates of wooden, rice straw and potato tuber. Cellulose 16, 1017–1023 (2009).
Wang, H., Zhang, X., Jiang, Z., Yu, Z. & Yu, Y. Isolating nanocellulose fibrills from bamboo parenchymal cells with excessive depth ultrasonication. Holzforschung 70, 401–409 (2016).
Ferrer, A., Filpponen, I., Rodríguez, A., Laine, J. & Rojas, O. J. Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: Manufacturing of nanofibrillated cellulose and EPFBF nanopaper. Bioresour. Technol. 125, 249–255 (2012).
Uetani, Okay. & Yano, H. Nanofibrillation of wooden pulp utilizing a high-speed blender. Biomacromol 12, 348–353 (2011).
Yue, Y. et al. Comparative properties of cellulose nano-crystals from native and mercerized cotton fibers. Cellulose 19, 1173–1187 (2012).
Saito, T., Kimura, S., Nishiyama, Y. & Isogai, A. Cellulose nanofibers ready by TEMPO-mediated oxidation of native cellulose. Biomacromol 8, 2485–2491 (2007).
Fujisawa, S., Okita, Y., Fukuzumi, H., Saito, T. & Isogai, A. Preparation and characterization of TEMPO-oxidized cellulose nanofibril movies with free carboxyl teams. Carbohydr. Polym. 84, 579–583 (2011).
Kaushik, A. & Singh, M. Isolation and characterization of cellulose nanofibrils from wheat straw utilizing steam explosion coupled with excessive shear homogenization. Carbohydr. Res. 346, 76–85 (2011).
Cherian, B. M. et al. Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr. Polym. 81, 720–725 (2010).
Abraham, E. et al. Environmental pleasant methodology for the extraction of coir fibre and isolation of nanofibre. Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2012.10.056 (2013).
Deepa, B. et al. Construction, morphology and thermal traits of banana nano fibers obtained by steam explosion. Bioresour. Technol. 102, 1988–1997 (2011).
Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J. & Castro, E. Enhanced enzymatic hydrolysis of olive tree wooden by steam explosion and alkaline peroxide delignification. Course of Biochem. 41, 423–429 (2006).
Cherian, B. M. et al. A novel methodology for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. J. Agric. Meals Chem. 56, 5617–5627 (2008).
Yamashiki, T. et al. Characterisation of cellulose handled by the steam explosion methodology. Half 2: Impact of therapy circumstances on modifications in morphology, diploma of polymerisation, solubility in aqueous sodium hydroxide and supermolecular construction of sentimental wooden pulp throughout st. Br. Polym. J. 22, 121–128 (1990).
Li, J., Henriksson, G. & Gellerstedt, G. Lignin depolymerization/repolymerization and its important function for delignification of aspen wooden by steam explosion. Bioresour. Technol. 98, 3061–3068 (2007).
Wong, A. W., Wang, H. & Lebrilla, C. B. Choice of anionic dopant for quantifying desialylation reactions with MALDI-FTMS. Anal. Chem. 72, 1419–1425 (2000).
Xiao, B., Solar, X. & Solar, R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw. Polym. Degrad. Stab. 74, 307–319 (2001).
Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. Normal Issues on Construction and Reactivity of Cellulose: Part 2.1–2.1.4. In Complete Cellulose Chemistry 9–29 (Wiley, 1998). https://doi.org/10.1002/3527601929.ch2a.
Batra, S. Okay. Different lengthy vegetable fibres. In Handbook of Fibre Chemistry Vol. 1083 (eds Pearce, E. & Lewin, M.) (Marcel Dekker, 1998).
Jiang, B. et al. Lignin as a wood-inspired binder enabled sturdy, water secure, and biodegradable paper for plastic alternative. Adv. Funct. Mater. 30, 1–11 (2020).
Leite, A. L. M. P., Zanon, C. D. & Menegalli, F. C. Isolation and characterization of cellulose nanofibers from cassava root bagasse and peelings. Carbohydr. Polym. 157, 962–970 (2017).
Moore, A. Okay. & Owen, N. L. Infrared spectroscopic research of stable wooden. Appl. Spectrosc. Rev. 36, 65–86 (2001).
Sills, D. L. & Gossett, J. M. Utilizing FTIR to foretell saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol. Bioeng. 109, 353–362 (2012).
Solar, X. F., Solar, R. C., Fowler, P. & Baird, M. S. Extraction and characterization of unique lignin and hemicelluloses from wheat straw. J. Agric. Meals Chem. 53, 860–870 (2005).
Sain, M. & Panthapulakkal, S. Bioprocess preparation of wheat straw fibers and their characterization. Ind. Crops Prod. 23, 1–8 (2006).
Paul, S. A. et al. Solvatochromic and electrokinetic research of banana fibrils ready from steam-exploded banana fiber. Biomacromol https://doi.org/10.1021/bm800026t (2008).
Naumann, A., Navarro-González, M., Peddireddi, S., Kües, U. & Polle, A. Fourier rework infrared microscopy and imaging: Detection of fungi in wooden. Fungal Genet. Biol. 42, 829–835 (2005).
Solar, R., Tomkinson, J., Wang, Y. & Xiao, B. Physico-chemical and structural characterization of hemicelluloses from wheat straw by alkaline peroxide extraction. Polymer (Guildf). 41, 2647–2656 (2000).
Troedec, M. et al. Affect of assorted chemical remedies on the composition and construction of hemp fibres. Compos. Half A. Appl. Sci. Manuf. 39, 514–522 (2008).
Khalil, H. P. S., Ismail, H., Rozman, H. & Ahmad, M. The impact of acetylation on interfacial shear energy between plant fibres and varied matrices. Eur. Polym. J. 37, 1037–1045 (2001).
Alemdar, A. & Sain, M. Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68, 557–565 (2008).
Nacos, M. et al. Kenaf xylan-A supply of biologically lively acidic oligosaccharides. Carbohydr. Polym. 66, 126–134 (2006).
Poletto, M., Zattera, A. J. & Santana, R. M. C. Structural variations between wooden species: Proof from chemical composition, FTIR spectroscopy, and thermogravimetric evaluation. J. Appl. Polym. Sci. 126, E337–E344 (2012).
Park, S., Baker, J. O., Himmel, M. E., Parilla, P. A. & Johnson, D. Okay. Cellulose crystallinity index: measurement strategies and their impression on deciphering cellulase efficiency. Biotechnol. Biofuels 3, 10 (2010).
Borysiak, S. & Doczekalska, B. X-ray Diffraction Examine of Pine Wooden Handled with NaOH. Fibers Textual content. East Eur. 13, 87–89 (2005).
Marchessault, R. H. & Sundararajan, P. R. The Polysaccharides (Tutorial Press, 1993).
Li, J. et al. Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride within the presence of iodine as a catalyst. Molecules 14, 3551–3566 (2009).
Fahma, F., Iwamoto, S., Hori, N., Iwata, T. & Takemura, A. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB). Cellulose 17, 977–985 (2010).
Chandra, J., George, N. & Narayanankutty, S. Okay. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydr. Polym. 142, 158–166 (2016).
Chirayil, C. J. et al. Isolation and characterization of cellulose nanofibrils from Helicteres isora plant. Ind. Crops Prod. 59, 27–34 (2014).
Nguyen, T., Zavarin, E. & Barrall, E. M. Thermal evaluation of lignocellulosic supplies. J. Macromol. Sci. Half C 20, 1–65 (1981).
Nguyen, T., Zavarin, E. & Barrall, E. M. Thermal evaluation of lignocellulosic supplies. Half II. Modified supplies. J. Macromol. Sci. Half C 21, 1–60 (1981).
Morán, J. I., Alvarez, V. A., Cyras, V. P. & Vázquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose https://doi.org/10.1007/s10570-007-9145-9 (2008).
Chen, Y., Tan, T., Lee, H. & Abd Hamid, S. Straightforward fabrication of extremely thermal-stable cellulose nanocrystals utilizing Cr(NO3)3 catalytic hydrolysis system: A feasibility examine from macro- to nano-dimensions. Supplies (Basel) 10, 42 (2017).
Chowdhury, Z. Z. & Hamid, S. B. A. Preparation and characterization of nanocrystalline cellulose utilizing ultrasonication mixed with a microwave-assisted pretreatment course of. BioResources 11, 3397–3415 (2016).
Huang, W. Cellulose Nanopapers. In Nanopapers 121–173 (Elsevier, 2018). https://doi.org/10.1016/B978-0-323-48019-2.00005-0.
Yildirim, N. & Shaler, S. A examine on thermal and nanomechanical efficiency of cellulose nanomaterials (CNs). Supplies (Basel). 10, 718 (2017).
Grønli, M. G., Várhegyi, G. & Di Blasi, C. Thermogravimetric evaluation and devolatilization kinetics of wooden. Ind. Eng. Chem. Res. 41, 4201–4208 (2002).
Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y. Thermal decomposition kinetics of pure fibers: Activation vitality with dynamic thermogravimetric evaluation. Polym. Degrad. Stab. 93, 90–98 (2008).
Shebani, A. N., van Reenen, A. J. & Meincken, M. The impact of wooden extractives on the thermal stability of various wood-LLDPE composites. Thermochim. Acta 481, 52–56 (2009).
Poletto, M., Dettenborn, J., Pistor, V., Zeni, M. & Zattera, A. J. Supplies produced from plant biomass: Half I: analysis of thermal stability and pyrolysis of wooden. Mater. Res. 13, 375–379 (2010).
Mohomane, S. M., Motaung, T. E. & Revaprasadu, N. Thermal degradation kinetics of sugarcane bagasse and smooth wooden cellulose. Supplies (Basel). 10, 1246 (2017).
Jeffrey, E. The Anatomy of Woody Vegetation (College of Chicago Press, 1917).
Schmid, R. Sonication and different enhancements on Jeffrey’s method for macerating wooden. Biotech. Histochem. 57, 293–299 (1982).
Tappi (Technical Affiliation of pulp and paper trade). Acid-insoluble lignin in wooden and pulp. In Tappi Take a look at Strategies 06:1–6 (Tappi Press, 2006).
Segal, L., Creely, J. J., Martin, A. E. & Conrad, C. M. An empirical methodology for estimating the diploma of crystallinity of native cellulose utilizing the x-ray diffractometer. Textual content. Res. J. 29, 786–794 (1959).
Ahvenainen, P., Kontro, I. & Svedström, Okay. Comparability of pattern crystallinity dedication strategies by X-ray diffraction for difficult cellulose I supplies. Cellulose 23, 1073–1086 (2016).