google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
19.6 C
New York
Tuesday, June 6, 2023

Measurement-induced collective vibrational quantum coherence beneath spontaneous Raman scattering in a liquid


  • Raman, C. V. & Krishnan, Okay. S. A brand new kind of secondary radiation. Nature 121, 501 (1928).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Partitions, D. F. Quantum principle of the Raman impact. Z. Phys. A: Hadrons Nucl. 237, 224–233 (1970).

    Article 
    CAS 

    Google Scholar
     

  • Partitions, D. F. Quantum principle of the Raman impact. Z. Phys. A: Hadrons Nucl. 244, 117–128 (1971).

    Article 
    CAS 

    Google Scholar
     

  • von Foerester, T. & Glauber, R. J. Quantum principle of sunshine propagation in amplifying media. Phys. Rev. A 3, 1484 (1971).

    Article 
    ADS 

    Google Scholar
     

  • Mostowski, J. & Raymer, M. The buildup of stimulated Raman scattering from spontaneous Raman scattering. Choose. Commun. 36, 237–240 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Raymer, M. G. & Mostowski, J. Stimulated raman scattering: unified remedy of spontaneous initiation and spatial propagation. Phys. Rev. A 24, 1980–1993 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Raymer, M. G., Walmsley, I. A., Mostowski, J. & Sobolewska, B. Quantum principle of spatial and temporal coherence properties of stimulated raman scattering. Phys. Rev. A 32, 332–344 (1985).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walmsley, I. A. & Raymer, M. G. Statement of macroscopic quantum fluctuations in stimulated raman scattering. Phys. Rev. Lett. 50, 962–965 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walmsley, I. A. & Raymer, M. G. Experimental research of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering. Phys. Rev. A 33, 382–390 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Raymer, M. G., Li, Z. W. & Walmsley, I. A. Temporal quantum fluctuations in stimulated Raman scattering: coherent-modes description. Phys. Rev. Lett. 63, 1586–1589 (1989).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Okay. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, Okay. C. et al. Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nat. Photonics 6, 41–44 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • England, D. G., Bustard, P. J., Nunn, J., Lausten, R. & Sussman, B. J. From photons to phonons and again: a THz optical reminiscence in diamond. Phys. Rev. Lett. 111, 243601 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • England, D. G. et al. Storage and retrieval of THz-bandwidth single photons utilizing a room-temperature diamond quantum reminiscence. Phys. Rev. Lett. 114, 053602 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hou, P.-Y. et al. Quantum teleportation from mild beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fisher, Okay. A. et al. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum reminiscence. Nat. Commun. 7, 5–10 (2016).

    Article 

    Google Scholar
     

  • Fisher, Okay. A. G. et al. Storage of polarization-entangled THz-bandwidth photons in a diamond quantum reminiscence. Phys. Rev. A 96, 012324 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Waldermann, F. C. et al. Measuring phonon dephasing with ultrafast pulses utilizing Raman spectral interference. Phys. Rev. B 78, 155201 (2008).

    Article 
    ADS 

    Google Scholar
     

  • Meiselman, S., Cohen, O., DeCamp, M. F. & Lorenz, V. O. Statement of coherence oscillations of single ensemble excitations in methanol. J. Choose. Soc. Am. B 31, 2131 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Velez, S. T., Sudhir, V., Sangouard, N. & Galland, C. Bell correlations between mild and vibration at ambient circumstances. Sci. Adv. 6, eabb0260 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Saraiva, A. et al. Photonic counterparts of cooper pairs. Phys. Rev. Lett. 119, 193603 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Parra-Murillo, C. A., Santos, M. F., Monken, C. H. & Jorio, A. Stokes–anti-stokes correlation within the inelastic scattering of sunshine by matter and generalization of the bose-einstein inhabitants operate. Phys. Rev. B 93, 125141 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Thapliyal, Okay. & Perina J. Jr. Superb pairing of the stokes and anti-stokes photons within the Raman course of. Phys. Rev. A 103, 033708 (2021).

  • Diaz, R. A., Monken, C., Jorio, A. & Santos, M. F. Efficient Hamiltonian for stokes–anti-stokes pair technology with pump and probe polarized modes. Phys. Rev. B 102, 134304 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shinbrough, Okay., Teng, Y., Fang, B., Lorenz, V. O. & Cohen, O. Photon-matter quantum correlations in spontaneous Raman scattering. Phys. Rev. A 101, 013415 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Roelli, P., Galland, C., Piro, N. & Kippenberg, T. J. Molecular cavity optomechanics as a principle of plasmon-enhanced Raman scattering. Nat. Nano 11, 164–169 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, Y., Aizpurua, J. & Esteban, R. Optomechanical collective results in surface-enhanced Raman scattering from many molecules. ACS Photonics 7, 1676–1688 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schmidt, M. Okay., Esteban, R., Giedke, G., Aizpurua, J. & Gonzalez-Tudela, A. Frequency-resolved photon correlations in cavity optomechanics. Quantum Sci. Technol. 6, 034005 (2021).

  • Oxtoby, D. W. Vibrational rest in liquids. Annu. Rev. Phys. Chem. 32, 77–101 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Beams, R., Cancado, L. G., Oh, S.-H., Jorio, A. & Novotny, L. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cancado, L. G., Beams, R., Jorio, A. & Novotny, L. Idea of spatial coherence in near-field Raman scattering. Phys. Rev. X 4, 031054 (2014).

    CAS 

    Google Scholar
     

  • Alencar, R. S. et al. Probing spatial phonon correlation size in post-transition steel monochalcogenide gasoline utilizing tip-enhanced raman spectroscopy. Nano Lett. 19, 7357–7364 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schrader, B. Infrared and Raman Spectroscopy: Strategies and Purposes (John Wiley & Sons, 2008).

  • Lengthy, D. A. The Raman Impact: A Unified Therapy of the Idea of Raman Scattering by Molecules (Wiley, 2002).

  • Le Ru, E. & Etchegoin, P. Ideas of Floor-enhanced Raman Spectroscopy: and Associated Plasmonic Results (Elsevier, 2008).

  • Solar, L. et al. Phonon dephasing dynamics in MoS2. Nano Lett. 21, 1434–1439 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Bustard, P. J. et al. Nonclassical correlations between terahertz-bandwidth photons mediated by rotational quanta in hydrogen molecules. Choose. Lett. 40, 922–925 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kasperczyk, M. et al. Temporal quantum correlations in inelastic mild scattering from water. Phys. Rev. Lett. 117, 1–5 (2016).

    Article 

    Google Scholar
     

  • Bussieres, F. et al. Potential purposes of optical quantum reminiscences. J. Mod. Choose. 60, 1519–1537 (2013).

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Lengthy-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flayac, H. & Savona, V. Heralded preparation and readout of entangled phonons in a photonic crystal cavity. Phys. Rev. Lett. 113, 1–5 (2014).

    Article 

    Google Scholar
     

  • Laubereau, A., Wochner, G. & Kaiser, W. Collective beating of molecular vibrations in liquids on the picosecond time scale. Choose. Commun. 17, 91–94 (1976).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Pestov, D. et al. Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement. Choose. Lett. 32, 1725–1727 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Konarska, J. et al. Dynamics of intermolecular interactions in CCl4 by way of the isotope impact by femtosecond time-resolved spectroscopy. Phys. Chem. Chem. Phys. 18, 16046–16054 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bitto, H. & Robert Huber, J. Molecular quantum beat spectroscopy. Choose. Commun. 80, 184–198 (1990).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Walmsley, I. A., Mitsunaga, M. & Tang, C. L. Idea of quantum beats in optical transmission-correlation and pump-probe experiments for a common raman configuration. Phys. Rev. A 38, 4681–4689 (1988).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Carter, R. T. & Huber, J. R. Quantum beat spectroscopy in chemistry. Chem. Soc. Rev. 29, 305–314 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Cox, T., Battaglia, M. & Madden, P. Properties of liquid CS2 from the allowed mild scattering spectra. Mol. Phys. 38, 1539–1554 (1979).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stoicheff, B. P. Excessive decision Raman spectroscopy of gases: XI. Spectra of CS2 and CO2. Can. J. Phys. 36, 218–230 (1958).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Plyler, E. Okay. & Humphreys, C. J. Infrared absorption spectrum of carbon disulfide. J. Res. Natl Bur. Stand. 39, 59 (1947).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, M. D. et al. Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, C. Okay. & Sutherland, G. B. B. M. The isotope impact within the vibration spectrum of CCl4. J. Chem. Phys. 6, 114–118 (1938).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Christ, A., Brecht, B., Mauerer, W. & Silberhorn, C. Idea of quantum frequency conversion and type-II parametric down-conversion within the high-gain regime. N. J. Phys. 15, 053038 (2013).

    Article 
    MathSciNet 

    Google Scholar
     

  • Quesada, N. & Sipe, J. E. Results of time ordering in quantum nonlinear optics. Phys. Rev. A 90, 063840 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Mølmer, Okay. Optical coherence: a handy fiction. Phys. Rev. A 55, 3195 (1997).

    Article 
    ADS 

    Google Scholar
     

  • Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Dialogue regarding two views on quantum coherence: factist and fictionist. Int. J. Quantum Inf. 04, 17–43 (2006).

    Article 
    MATH 

    Google Scholar
     

  • Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. The coherence of sunshine is basically tied to the quantum coherence of the emitting particle. Sci. Adv. 7, eabf8096 (2021).

  • Dorfman, Okay. E. & Mukamel, S. Multidimensional photon correlation spectroscopy of cavity polaritons. Proc. Natl Acad. Sci. 115, 1451–1456 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Galego, J., Garcia-Vidal, F. J. & Feist, J. Cavity-induced modifications of molecular construction within the strong-coupling regime. Phys. Rev. X 5, 041022 (2015).


    Google Scholar
     

  • Spano, F. C. Optical microcavities improve the exciton coherence size and eradicate vibronic coupling in j-aggregates. J. Chem. Phys. 142, 184707 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Herrera, F. & Spano, F. C. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116, 238301 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Avramenko, A. G. & Rury, A. S. Interrogating the construction of molecular cavity polaritons with resonance Raman scattering: An experimentally motivated theoretical description. J. Phys. Chem. C 123, 30551–30561 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Shalabney, A. et al. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem. Int. Ed. 54, 7971–7975 (2015).

    Article 
    CAS 

    Google Scholar
     

  • del Pino, J., Feist, J. & Garcia-Vidal, F. J. Signatures of vibrational sturdy coupling in Raman scattering. J. Phys. Chem. C 119, 29132–29137 (2015).

    Article 

    Google Scholar
     

  • del Pino, J., Garcia-Vidal, F. J. & Feist, J. Exploiting vibrational sturdy coupling to make an optical parametric oscillator out of a Raman laser. Phys. Rev. Lett. 117, 277401 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Strashko, A. & Keeling, J. Raman scattering with strongly coupled vibron-polaritons. Phys. Rev. A 94, 023843 (2016).

    Article 
    ADS 

    Google Scholar
     

  • Roelli, P., Martin-Cano, D., Kippenberg, T. J. & Galland, C. Molecular platform for frequency upconversion on the single-photon degree. Phys. Rev. X 10, 031057 (2020).

    CAS 

    Google Scholar
     

  • Hughes, S., Settineri, A., Savasta, S. & Nori, F. Resonant Raman scattering of single molecules beneath simultaneous sturdy cavity coupling and ultrastrong optomechanical coupling: phonon-dressed polaritons. Phys. Rev. B 104, 045431 (2021).

  • Ribeiro, R. F., Martínez-Martínez, L. A., Du, M., Campos-Gonzalez-Angulo, J. & Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9, 6325–6339 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles