Raman, C. V. & Krishnan, Okay. S. A brand new kind of secondary radiation. Nature 121, 501 (1928).
Partitions, D. F. Quantum principle of the Raman impact. Z. Phys. A: Hadrons Nucl. 237, 224–233 (1970).
Partitions, D. F. Quantum principle of the Raman impact. Z. Phys. A: Hadrons Nucl. 244, 117–128 (1971).
von Foerester, T. & Glauber, R. J. Quantum principle of sunshine propagation in amplifying media. Phys. Rev. A 3, 1484 (1971).
Mostowski, J. & Raymer, M. The buildup of stimulated Raman scattering from spontaneous Raman scattering. Choose. Commun. 36, 237–240 (1981).
Raymer, M. G. & Mostowski, J. Stimulated raman scattering: unified remedy of spontaneous initiation and spatial propagation. Phys. Rev. A 24, 1980–1993 (1981).
Raymer, M. G., Walmsley, I. A., Mostowski, J. & Sobolewska, B. Quantum principle of spatial and temporal coherence properties of stimulated raman scattering. Phys. Rev. A 32, 332–344 (1985).
Walmsley, I. A. & Raymer, M. G. Statement of macroscopic quantum fluctuations in stimulated raman scattering. Phys. Rev. Lett. 50, 962–965 (1983).
Walmsley, I. A. & Raymer, M. G. Experimental research of the macroscopic quantum fluctuations of partially coherent stimulated raman scattering. Phys. Rev. A 33, 382–390 (1986).
Raymer, M. G., Li, Z. W. & Walmsley, I. A. Temporal quantum fluctuations in stimulated Raman scattering: coherent-modes description. Phys. Rev. Lett. 63, 1586–1589 (1989).
Lee, Okay. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).
Lee, Okay. C. et al. Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond. Nat. Photonics 6, 41–44 (2012).
England, D. G., Bustard, P. J., Nunn, J., Lausten, R. & Sussman, B. J. From photons to phonons and again: a THz optical reminiscence in diamond. Phys. Rev. Lett. 111, 243601 (2013).
England, D. G. et al. Storage and retrieval of THz-bandwidth single photons utilizing a room-temperature diamond quantum reminiscence. Phys. Rev. Lett. 114, 053602 (2015).
Hou, P.-Y. et al. Quantum teleportation from mild beams to vibrational states of a macroscopic diamond. Nat. Commun. 7, 11736 (2016).
Fisher, Okay. A. et al. Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum reminiscence. Nat. Commun. 7, 5–10 (2016).
Fisher, Okay. A. G. et al. Storage of polarization-entangled THz-bandwidth photons in a diamond quantum reminiscence. Phys. Rev. A 96, 012324 (2017).
Waldermann, F. C. et al. Measuring phonon dephasing with ultrafast pulses utilizing Raman spectral interference. Phys. Rev. B 78, 155201 (2008).
Meiselman, S., Cohen, O., DeCamp, M. F. & Lorenz, V. O. Statement of coherence oscillations of single ensemble excitations in methanol. J. Choose. Soc. Am. B 31, 2131 (2014).
Velez, S. T., Sudhir, V., Sangouard, N. & Galland, C. Bell correlations between mild and vibration at ambient circumstances. Sci. Adv. 6, eabb0260 (2020).
Saraiva, A. et al. Photonic counterparts of cooper pairs. Phys. Rev. Lett. 119, 193603 (2017).
Parra-Murillo, C. A., Santos, M. F., Monken, C. H. & Jorio, A. Stokes–anti-stokes correlation within the inelastic scattering of sunshine by matter and generalization of the bose-einstein inhabitants operate. Phys. Rev. B 93, 125141 (2016).
Thapliyal, Okay. & Perina J. Jr. Superb pairing of the stokes and anti-stokes photons within the Raman course of. Phys. Rev. A 103, 033708 (2021).
Diaz, R. A., Monken, C., Jorio, A. & Santos, M. F. Efficient Hamiltonian for stokes–anti-stokes pair technology with pump and probe polarized modes. Phys. Rev. B 102, 134304 (2020).
Shinbrough, Okay., Teng, Y., Fang, B., Lorenz, V. O. & Cohen, O. Photon-matter quantum correlations in spontaneous Raman scattering. Phys. Rev. A 101, 013415 (2020).
Roelli, P., Galland, C., Piro, N. & Kippenberg, T. J. Molecular cavity optomechanics as a principle of plasmon-enhanced Raman scattering. Nat. Nano 11, 164–169 (2016).
Zhang, Y., Aizpurua, J. & Esteban, R. Optomechanical collective results in surface-enhanced Raman scattering from many molecules. ACS Photonics 7, 1676–1688 (2020).
Schmidt, M. Okay., Esteban, R., Giedke, G., Aizpurua, J. & Gonzalez-Tudela, A. Frequency-resolved photon correlations in cavity optomechanics. Quantum Sci. Technol. 6, 034005 (2021).
Oxtoby, D. W. Vibrational rest in liquids. Annu. Rev. Phys. Chem. 32, 77–101 (1981).
Beams, R., Cancado, L. G., Oh, S.-H., Jorio, A. & Novotny, L. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).
Cancado, L. G., Beams, R., Jorio, A. & Novotny, L. Idea of spatial coherence in near-field Raman scattering. Phys. Rev. X 4, 031054 (2014).
Alencar, R. S. et al. Probing spatial phonon correlation size in post-transition steel monochalcogenide gasoline utilizing tip-enhanced raman spectroscopy. Nano Lett. 19, 7357–7364 (2019).
Schrader, B. Infrared and Raman Spectroscopy: Strategies and Purposes (John Wiley & Sons, 2008).
Lengthy, D. A. The Raman Impact: A Unified Therapy of the Idea of Raman Scattering by Molecules (Wiley, 2002).
Le Ru, E. & Etchegoin, P. Ideas of Floor-enhanced Raman Spectroscopy: and Associated Plasmonic Results (Elsevier, 2008).
Solar, L. et al. Phonon dephasing dynamics in MoS2. Nano Lett. 21, 1434–1439 (2021).
Bustard, P. J. et al. Nonclassical correlations between terahertz-bandwidth photons mediated by rotational quanta in hydrogen molecules. Choose. Lett. 40, 922–925 (2015).
Kasperczyk, M. et al. Temporal quantum correlations in inelastic mild scattering from water. Phys. Rev. Lett. 117, 1–5 (2016).
Bussieres, F. et al. Potential purposes of optical quantum reminiscences. J. Mod. Choose. 60, 1519–1537 (2013).
Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Lengthy-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Flayac, H. & Savona, V. Heralded preparation and readout of entangled phonons in a photonic crystal cavity. Phys. Rev. Lett. 113, 1–5 (2014).
Laubereau, A., Wochner, G. & Kaiser, W. Collective beating of molecular vibrations in liquids on the picosecond time scale. Choose. Commun. 17, 91–94 (1976).
Pestov, D. et al. Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement. Choose. Lett. 32, 1725–1727 (2007).
Konarska, J. et al. Dynamics of intermolecular interactions in CCl4 by way of the isotope impact by femtosecond time-resolved spectroscopy. Phys. Chem. Chem. Phys. 18, 16046–16054 (2016).
Bitto, H. & Robert Huber, J. Molecular quantum beat spectroscopy. Choose. Commun. 80, 184–198 (1990).
Walmsley, I. A., Mitsunaga, M. & Tang, C. L. Idea of quantum beats in optical transmission-correlation and pump-probe experiments for a common raman configuration. Phys. Rev. A 38, 4681–4689 (1988).
Carter, R. T. & Huber, J. R. Quantum beat spectroscopy in chemistry. Chem. Soc. Rev. 29, 305–314 (2000).
Cox, T., Battaglia, M. & Madden, P. Properties of liquid CS2 from the allowed mild scattering spectra. Mol. Phys. 38, 1539–1554 (1979).
Stoicheff, B. P. Excessive decision Raman spectroscopy of gases: XI. Spectra of CS2 and CO2. Can. J. Phys. 36, 218–230 (1958).
Plyler, E. Okay. & Humphreys, C. J. Infrared absorption spectrum of carbon disulfide. J. Res. Natl Bur. Stand. 39, 59 (1947).
Anderson, M. D. et al. Two-color pump-probe measurement of photonic quantum correlations mediated by a single phonon. Phys. Rev. Lett. 120, 233601 (2018).
Galland, C., Sangouard, N., Piro, N., Gisin, N. & Kippenberg, T. J. Heralded single-phonon preparation, storage, and readout in cavity optomechanics. Phys. Rev. Lett. 112, 143602 (2014).
Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).
Wu, C. Okay. & Sutherland, G. B. B. M. The isotope impact within the vibration spectrum of CCl4. J. Chem. Phys. 6, 114–118 (1938).
Christ, A., Brecht, B., Mauerer, W. & Silberhorn, C. Idea of quantum frequency conversion and type-II parametric down-conversion within the high-gain regime. N. J. Phys. 15, 053038 (2013).
Quesada, N. & Sipe, J. E. Results of time ordering in quantum nonlinear optics. Phys. Rev. A 90, 063840 (2014).
Mølmer, Okay. Optical coherence: a handy fiction. Phys. Rev. A 55, 3195 (1997).
Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Dialogue regarding two views on quantum coherence: factist and fictionist. Int. J. Quantum Inf. 04, 17–43 (2006).
Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. The coherence of sunshine is basically tied to the quantum coherence of the emitting particle. Sci. Adv. 7, eabf8096 (2021).
Dorfman, Okay. E. & Mukamel, S. Multidimensional photon correlation spectroscopy of cavity polaritons. Proc. Natl Acad. Sci. 115, 1451–1456 (2018).
Galego, J., Garcia-Vidal, F. J. & Feist, J. Cavity-induced modifications of molecular construction within the strong-coupling regime. Phys. Rev. X 5, 041022 (2015).
Spano, F. C. Optical microcavities improve the exciton coherence size and eradicate vibronic coupling in j-aggregates. J. Chem. Phys. 142, 184707 (2015).
Herrera, F. & Spano, F. C. Cavity-controlled chemistry in molecular ensembles. Phys. Rev. Lett. 116, 238301 (2016).
Avramenko, A. G. & Rury, A. S. Interrogating the construction of molecular cavity polaritons with resonance Raman scattering: An experimentally motivated theoretical description. J. Phys. Chem. C 123, 30551–30561 (2019).
Shalabney, A. et al. Enhanced Raman scattering from vibro-polariton hybrid states. Angew. Chem. Int. Ed. 54, 7971–7975 (2015).
del Pino, J., Feist, J. & Garcia-Vidal, F. J. Signatures of vibrational sturdy coupling in Raman scattering. J. Phys. Chem. C 119, 29132–29137 (2015).
del Pino, J., Garcia-Vidal, F. J. & Feist, J. Exploiting vibrational sturdy coupling to make an optical parametric oscillator out of a Raman laser. Phys. Rev. Lett. 117, 277401 (2016).
Strashko, A. & Keeling, J. Raman scattering with strongly coupled vibron-polaritons. Phys. Rev. A 94, 023843 (2016).
Roelli, P., Martin-Cano, D., Kippenberg, T. J. & Galland, C. Molecular platform for frequency upconversion on the single-photon degree. Phys. Rev. X 10, 031057 (2020).
Hughes, S., Settineri, A., Savasta, S. & Nori, F. Resonant Raman scattering of single molecules beneath simultaneous sturdy cavity coupling and ultrastrong optomechanical coupling: phonon-dressed polaritons. Phys. Rev. B 104, 045431 (2021).
Ribeiro, R. F., Martínez-Martínez, L. A., Du, M., Campos-Gonzalez-Angulo, J. & Yuen-Zhou, J. Polariton chemistry: controlling molecular dynamics with optical cavities. Chem. Sci. 9, 6325–6339 (2018).