Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen manufacturing. Nat. Chem. 6, 964–970 (2014).
Wagner, A., Sahm, C. D. & Reisner, E. In direction of molecular understanding of native chemical surroundings results in electro- and photocatalytic CO2 discount. Nat. Catal. 3, 775–786 (2020).
Liu, D., Wang, J., Bai, X., Zong, R. & Zhu, Y. Self-assembled PDINH supramolecular system for photocatalysis beneath seen gentle. Adv. Mater. 28, 7284–7290 (2016).
Shigemitsu, H. et al. Aggregation-induced photocatalytic exercise and environment friendly photocatalytic hydrogen evolution of amphiphilic rhodamines in water. Chem. Sci. 11, 11843–11848 (2020).
Giri, G. et al. Tuning cost transport in solution-sheared natural semiconductors utilizing lattice pressure. Nature 480, 504–508 (2011).
Aida, T., Meijer, E. W. & Stupp, S. I. Purposeful supramolecular polymers. Science 335, 813–817 (2012).
Tantakitti, F. et al. Power landscapes and capabilities of supramolecular programs. Nat. Mater. 15, 469–476 (2016).
Li, Q. & Li, Z. Molecular packing: one other key level for the efficiency of natural and polymeric optoelectronic supplies. Acc. Chem. Res. 53, 962–973 (2020).
Rivnay, J. et al. Giant modulation of provider transport by grain-boundary molecular packing and microstructure in natural skinny movies. Nat. Mater. 8, 952–958 (2009).
Mutai, T., Satou, H. & Araki, Okay. Reproducible on–off switching of solid-state luminescence by controlling molecular packing by way of heat-mode interconversion. Nat. Mater. 4, 685–687 (2005).
Coropceanu, V. et al. Cost transport in natural semiconductors. Chem. Rev. 107, 926–952 (2007).
Kazantsev, R. V. et al. Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J. Am. Chem. Soc. 139, 6120–6127 (2017).
McDowall, D. et al. Controlling photocatalytic exercise by self-assembly—tuning perylene bisimide photocatalysts for the hydrogen evolution response. Adv. Power Mater. 10, 2002469 (2020).
Weingarten, A. S. et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 137, 15241–15246 (2015).
Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).
Ogi, S., Sugiyasu, Okay., Manna, S., Samitsu, S. & Takeuchi, M. Dwelling supramolecular polymerization realized by way of a biomimetic method. Nat. Chem. 6, 188–195 (2014).
Kudo, A. & Miseki, Y. Heterogeneous photocatalyst supplies for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).
Zhang, G., Lan, Z. A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016).
Hou, H., Zeng, X. & Zhang, X. Manufacturing of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).
Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from natural semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).
Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide power conversion. Nat. Mater. 18, 985–993 (2019).
Lin, L. et al. Molecular-level insights on the reactive side of carbon nitride single crystals photocatalysing general water splitting. Nat. Catal. 3, 649–655 (2020).
Benniston, A. C., Harriman, A., Lawrie, D. J. & Mayeux, A. The photophysical properties of a pyrene–thiophene–terpyridine conjugate and of its zinc(II) and ruthenium(II) complexes. Phys. Chem. Chem. Phys. 6, 51–57 (2004).
Zhou, C. et al. Enhancing the electroluminescent effectivity of acridine-based donor–acceptor supplies: quasi-equivalent hybridized native and charge-transfer state. J. Phys. Chem. C 122, 18376–18382 (2018).
Dhara, A. et al. Zero-overlap fluorophores for fluorescent research at any focus. J. Am. Chem. Soc. 142, 12167–12180 (2020).
Guo, Y., Shi, W. & Zhu, Y. Inside electrical area engineering for steering photogenerated cost separation and enhancing photoactivity. EcoMat 1, 1–20 (2019).
Schubert, S., Delaney, J. T. & Schubert, U. S. Nanoprecipitation and nanoformulation of polymers: from historical past to highly effective potentialities past poly(lactic acid). Gentle Matter 7, 1581–1588 (2011).
Ramírez, C. L., Mangione, M. I., Bertolotti, S. G., Arbeloa, E. M. & Parise, A. R. A photophysical and spectroelectrochemical research on N-phenyl-carbazoles and their oxidized species. J. Photochem. Photobiol. A Chem. 365, 199–207 (2018).
Neelambra, A. U., Govind, C., Devassia, T. T., Somashekharappa, G. M. & Karunakaran, V. Direct proof of solvent polarity governing the intramolecular cost and power switch: ultrafast rest dynamics of push–pull fluorene derivatives. Phys. Chem. Chem. Phys. 21, 11087–11102 (2019).
Wang, X. et al. Sulfone-containing covalent natural frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).
Maeda, Okay. et al. Photocatalytic actions of graphitic carbon nitride powder for water discount and oxidation beneath seen gentle. J. Phys. Chem. C. 113, 4940–4947 (2009).
Liu, L. et al. Linear conjugated polymers for solar-driven hydrogen peroxide manufacturing: the significance of catalyst stability. J. Am. Chem. Soc. 143, 19287–19293 (2021).
CrysAlisPRO, 2020 model (Oxford Diffraction/Agilent Applied sciences UK, 2020).
Sheldrick, G. M. A brief historical past of SHELX. Acta Cryst. A6 4, 112–122 (2008).
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Okay. & Puschmann, H. OLEX2: a whole construction resolution, refinement and evaluation program. J. Appl. Cryst. 42, 339–341 (2009).
Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Cryst. C7 1, 3–8 (2015).
Nowell, H., Barnett, S. A., Christensen, Okay. E., Teat, S. J. & Allan, D. R. I19, the small-molecule single-crystal diffraction beamline at Diamond Mild Supply. J. Synchrotron Radiat. 19, 435–441 (2012).
Allan, D. et al. Novel twin air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at Diamond Mild Supply. Crystals 7, 336 (2017).
Coelho, A. A. TOPAS and TOPAS-Tutorial: an optimization program integrating laptop algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).
Dollase, W. A. Correction of intensities for most popular orientation in powder diffractometry: software of the March mannequin. J. Appl. Cryst. 19, 267–272 (1986).
Wei, Z. et al. Environment friendly visible-light-driven selective oxygen discount to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Power Environ. Sci. 11, 2581–2589 (2018).
Yanai, T., Tew, D. P. & Helpful, N. C. A brand new hybrid exchange-correlation purposeful utilizing the Coulomb-attenuating methodology (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).
Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).
Liu, Z., Lu, T. & Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: digital construction, digital spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020).
Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).
Bannwarth, C. & Grimme, S. A simplified time-dependent density purposeful principle method for digital ultraviolet and round dichroism spectra of very giant molecules. Comput. Theor. Chem. 1040, 45–53 (2014).
Hanwell, M. D. et al. Avogadro: a sophisticated semantic chemical editor, visualization, and evaluation platform. J. Cheminform. 4, 1–17 (2012).