11.1 C
New York
Saturday, April 1, 2023

Packing-induced selectivity switching in molecular nanoparticle photocatalysts for hydrogen and hydrogen peroxide manufacturing


  • Weingarten, A. S. et al. Self-assembling hydrogel scaffolds for photocatalytic hydrogen manufacturing. Nat. Chem. 6, 964–970 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Wagner, A., Sahm, C. D. & Reisner, E. In direction of molecular understanding of native chemical surroundings results in electro- and photocatalytic CO2 discount. Nat. Catal. 3, 775–786 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Liu, D., Wang, J., Bai, X., Zong, R. & Zhu, Y. Self-assembled PDINH supramolecular system for photocatalysis beneath seen gentle. Adv. Mater. 28, 7284–7290 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Shigemitsu, H. et al. Aggregation-induced photocatalytic exercise and environment friendly photocatalytic hydrogen evolution of amphiphilic rhodamines in water. Chem. Sci. 11, 11843–11848 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Giri, G. et al. Tuning cost transport in solution-sheared natural semiconductors utilizing lattice pressure. Nature 480, 504–508 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Aida, T., Meijer, E. W. & Stupp, S. I. Purposeful supramolecular polymers. Science 335, 813–817 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Tantakitti, F. et al. Power landscapes and capabilities of supramolecular programs. Nat. Mater. 15, 469–476 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Li, Q. & Li, Z. Molecular packing: one other key level for the efficiency of natural and polymeric optoelectronic supplies. Acc. Chem. Res. 53, 962–973 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Rivnay, J. et al. Giant modulation of provider transport by grain-boundary molecular packing and microstructure in natural skinny movies. Nat. Mater. 8, 952–958 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Mutai, T., Satou, H. & Araki, Okay. Reproducible on–off switching of solid-state luminescence by controlling molecular packing by way of heat-mode interconversion. Nat. Mater. 4, 685–687 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Coropceanu, V. et al. Cost transport in natural semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Kazantsev, R. V. et al. Crystal-phase transitions and photocatalysis in supramolecular scaffolds. J. Am. Chem. Soc. 139, 6120–6127 (2017).

    Article 
    CAS 

    Google Scholar
     

  • McDowall, D. et al. Controlling photocatalytic exercise by self-assembly—tuning perylene bisimide photocatalysts for the hydrogen evolution response. Adv. Power Mater. 10, 2002469 (2020).

  • Weingarten, A. S. et al. Supramolecular packing controls H2 photocatalysis in chromophore amphiphile hydrogels. J. Am. Chem. Soc. 137, 15241–15246 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Ogi, S., Sugiyasu, Okay., Manna, S., Samitsu, S. & Takeuchi, M. Dwelling supramolecular polymerization realized by way of a biomimetic method. Nat. Chem. 6, 188–195 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Kudo, A. & Miseki, Y. Heterogeneous photocatalyst supplies for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G., Lan, Z. A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712–15727 (2016).

    Article 

    Google Scholar
     

  • Hou, H., Zeng, X. & Zhang, X. Manufacturing of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Kosco, J. et al. Enhanced photocatalytic hydrogen evolution from natural semiconductor heterojunction nanoparticles. Nat. Mater. 19, 559–565 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide power conversion. Nat. Mater. 18, 985–993 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Lin, L. et al. Molecular-level insights on the reactive side of carbon nitride single crystals photocatalysing general water splitting. Nat. Catal. 3, 649–655 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Benniston, A. C., Harriman, A., Lawrie, D. J. & Mayeux, A. The photophysical properties of a pyrene–thiophene–terpyridine conjugate and of its zinc(II) and ruthenium(II) complexes. Phys. Chem. Chem. Phys. 6, 51–57 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, C. et al. Enhancing the electroluminescent effectivity of acridine-based donor–acceptor supplies: quasi-equivalent hybridized native and charge-transfer state. J. Phys. Chem. C 122, 18376–18382 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dhara, A. et al. Zero-overlap fluorophores for fluorescent research at any focus. J. Am. Chem. Soc. 142, 12167–12180 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Guo, Y., Shi, W. & Zhu, Y. Inside electrical area engineering for steering photogenerated cost separation and enhancing photoactivity. EcoMat 1, 1–20 (2019).

    Article 

    Google Scholar
     

  • Schubert, S., Delaney, J. T. & Schubert, U. S. Nanoprecipitation and nanoformulation of polymers: from historical past to highly effective potentialities past poly(lactic acid). Gentle Matter 7, 1581–1588 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Ramírez, C. L., Mangione, M. I., Bertolotti, S. G., Arbeloa, E. M. & Parise, A. R. A photophysical and spectroelectrochemical research on N-phenyl-carbazoles and their oxidized species. J. Photochem. Photobiol. A Chem. 365, 199–207 (2018).

    Article 

    Google Scholar
     

  • Neelambra, A. U., Govind, C., Devassia, T. T., Somashekharappa, G. M. & Karunakaran, V. Direct proof of solvent polarity governing the intramolecular cost and power switch: ultrafast rest dynamics of push–pull fluorene derivatives. Phys. Chem. Chem. Phys. 21, 11087–11102 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Sulfone-containing covalent natural frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 10, 1180–1189 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Maeda, Okay. et al. Photocatalytic actions of graphitic carbon nitride powder for water discount and oxidation beneath seen gentle. J. Phys. Chem. C. 113, 4940–4947 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. et al. Linear conjugated polymers for solar-driven hydrogen peroxide manufacturing: the significance of catalyst stability. J. Am. Chem. Soc. 143, 19287–19293 (2021).

    Article 
    CAS 

    Google Scholar
     

  • CrysAlisPRO, 2020 model (Oxford Diffraction/Agilent Applied sciences UK, 2020).

  • Sheldrick, G. M. A brief historical past of SHELX. Acta Cryst. A6 4, 112–122 (2008).

    Article 

    Google Scholar
     

  • Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. Okay. & Puschmann, H. OLEX2: a whole construction resolution, refinement and evaluation program. J. Appl. Cryst. 42, 339–341 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sheldrick, G. M. Crystal construction refinement with SHELXL. Acta Cryst. C7 1, 3–8 (2015).


    Google Scholar
     

  • Nowell, H., Barnett, S. A., Christensen, Okay. E., Teat, S. J. & Allan, D. R. I19, the small-molecule single-crystal diffraction beamline at Diamond Mild Supply. J. Synchrotron Radiat. 19, 435–441 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Allan, D. et al. Novel twin air-bearing fixed-χ diffractometer for small-molecule single-crystal X-ray diffraction on beamline I19 at Diamond Mild Supply. Crystals 7, 336 (2017).

    Article 

    Google Scholar
     

  • Coelho, A. A. TOPAS and TOPAS-Tutorial: an optimization program integrating laptop algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Dollase, W. A. Correction of intensities for most popular orientation in powder diffractometry: software of the March mannequin. J. Appl. Cryst. 19, 267–272 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Wei, Z. et al. Environment friendly visible-light-driven selective oxygen discount to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Power Environ. Sci. 11, 2581–2589 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yanai, T., Tew, D. P. & Helpful, N. C. A brand new hybrid exchange-correlation purposeful utilizing the Coulomb-attenuating methodology (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article 

    Google Scholar
     

  • Liu, Z., Lu, T. & Chen, Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: digital construction, digital spectrum, and optical nonlinearity. Carbon 165, 461–467 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, 2016).

  • Bannwarth, C. & Grimme, S. A simplified time-dependent density purposeful principle method for digital ultraviolet and round dichroism spectra of very giant molecules. Comput. Theor. Chem. 1040, 45–53 (2014).

    Article 

    Google Scholar
     

  • Hanwell, M. D. et al. Avogadro: a sophisticated semantic chemical editor, visualization, and evaluation platform. J. Cheminform. 4, 1–17 (2012).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles