11.1 C
New York
Saturday, April 1, 2023

Periodic temperature modifications drive the proliferation of self-replicating RNAs in vesicle populations


  • Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Joyce, G. F. & Szostak, J. W. Protocells and RNA self-replication. Chilly Spring Harb. Perspect. Biol. 10, a034801 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • von Kiedrowski, G. A self-replicating hexadeoxynucleotide. Angew. Chem. Int. Ed. Engl. 25, 932–935 (1986).

    Article 

    Google Scholar
     

  • Robertson, M. P. & Joyce, G. F. Extremely environment friendly self-replicating RNA enzymes. Chem. Biol. 21, 238–245 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, D. H., Granja, J. R., Martinez, J. A., Severin, Ok. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Breslow, R. On the mechanism of the formose response. Tetrahedron Lett. 1, 22–26 (1959).

    Article 

    Google Scholar
     

  • Tawfik, D. S. & Griffiths, A. D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 16, 652–656 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Eigen, M. Selforganization of matter and the evolution of organic macromolecules. Naturwissenschaften 58, 465–523 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nooner, D.W., Oro, J. Synthesis of fatty acids by a closed system Fischer-Tropsch course of. In: Hydrocarbon Synthesis from Carbon Monoxide and Hydrogen. Vol 178. American Chemical Society; 1979:159–171. https://doi.org/10.1021/ba-1979-0178.ch012

  • Anella, F. & Danelon, C. Reconciling ligase ribozyme exercise with fatty acid vesicle stability. Life 4, 929–943 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamala, Ok. P., Engelhart, A. E. & Szostak, J. W. Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun. 7, 11041 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fayolle, D. et al. Crude phosphorylation mixtures containing racemic lipid amphiphiles self-assemble to offer secure primitive compartments. Sci. Rep. 7, 18106 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bonfio, C. et al. Size-selective synthesis of acylglycerol-phosphates by way of energy-dissipative biking. J. Am. Chem. Soc. 141, 3934–3939 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, L. et al. Enzyme-free synthesis of pure phospholipids in water. Nat. Chem. 12, 1029–1034 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fiore, M. et al. Synthesis of phospholipids beneath believable prebiotic circumstances and analogies with phospholipid biochemistry for origin of life research. Astrobiology 22, 598–627 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene switch and the character of bacterial innovation. Nature 405, 299–304 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woese, C. R. On the evolution of cells. Proc. Natl Acad. Sci. 99, 8742–8747 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Morasch, M. et al. Heated gasoline bubbles enrich, crystallize, dry, phosphorylate and encapsulate prebiotic molecules. Nat. Chem. 11, 779–788 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rubio-Sánchez, R. et al. Thermally pushed membrane section transitions allow content material reshuffling in primitive cells. J. Am. Chem. Soc. 143, 16589–16598 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joshi, M. P., Sawant, A. A. & Rajamani, S. Spontaneous emergence of membrane-forming protoamphiphiles from a lipid–amino acid combination beneath moist–dry cycles. Chem. Sci. 12, 2970–2978 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Menor-Salván, C. & Marín-Yaseli, M. R. Prebiotic chemistry in eutectic options on the water–ice matrix. Chem. Soc. Rev. 41, 5404 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Menor-Salván, C. & Marín-Yaseli, M. R. A brand new route for the prebiotic synthesis of nucleobases and hydantoins in water/ice options involving the photochemistry of acetylene. Chem. – A Eur. J. 19, 6488–6497 (2013).

    Article 

    Google Scholar
     

  • Zhang, S. J., Duzdevich, D., Ding, D., Szostak, J.W. Freeze-thaw cycles allow a prebiotically believable and steady pathway from nucleotide activation to nonenzymatic RNA copying. Proceedings of the Nationwide Academy of Sciences. 2022;119. https://doi.org/10.1073/pnas.2116429119

  • Attwater, J., Wochner, A., Pinheiro, V. B., Coulson, A. & Holliger, P. Ice as a protocellular medium for RNA replication. Nat. Commun. 1, 76 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Vlassov, A. V., Johnston, B. H., Landweber, L. F. & Kazakov, S. A. Ligation exercise of fragmented ribozymes in frozen resolution: implications for the RNA world. Nucleic Acids Res. 32, 2966–2974 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mutschler, H., Wochner, A. & Holliger, P. Freeze–thaw cycles as drivers of complicated ribozyme meeting. Nat. Chem. 7, 502–508 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Roberts, S. J., Liu, Z. & Sutherland, J. D. Probably prebiotic synthesis of Aminoacyl-RNA by way of a bridging phosphoramidate-ester intermediate. J. Am. Chem. Soc. 144, 4254–4259 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tsuji, G., Fujii, S., Sunami, T. & Yomo, T. Sustainable proliferation of liposomes appropriate with inside RNA replication. Proc. Natl Acad. Sci. 113, 590–595 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Litschel, T. et al. Freeze-thaw cycles induce content material change between cell-sized lipid vesicles. N. J. Phys. 20, 055008 (2018).

    Article 

    Google Scholar
     

  • Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Glasner, M. E., Bergman, N. H. & Bartel, D. P. Steel ion necessities for construction and catalysis of an RNA ligase ribozyme. Biochemistry 41, 8103–8112 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rogers, J. & Joyce, G. F. The impact of cytidine on the construction and performance of an RNA ligase ribozyme. RNA 7, S135583820100228X (2001).

    Article 

    Google Scholar
     

  • Olea, C. & Joyce, G. Actual-time detection of a self-replicating RNA enzyme. Molecules 21, 1310 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yandrapalli, N. & Robinson, T. Extremely-high capability microfluidic trapping of big vesicles for high-throughput membrane research. Lab. Chip. 19, 626–633 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Szathmáry, E. & Smith, J. M. The foremost evolutionary transitions. Nature 374, 227–232 (1995).

    Article 
    PubMed 

    Google Scholar
     

  • Jeancolas, C., Malaterre, C. & Nghe, P. Thresholds in origin of life situations. iScience 23, 101756 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bansho, Y., Furubayashi, T., Ichihashi, N. & Yomo, T. Host–parasite oscillation dynamics and evolution in a compartmentalized RNA replication system. Proc. Natl Acad. Sci. 113, 4045–4050 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumura, S. et al. Transient compartmentalization of RNA replicators prevents extinction resulting from parasites. Science (1979). 354, 1293–1296 (2016).

    CAS 

    Google Scholar
     

  • Furubayashi, T. et al. Emergence and diversification of a host-parasite RNA ecosystem by way of Darwinian evolution. Elife 9, 1–15 (2020).

    Article 

    Google Scholar
     

  • Czerniak, T., Saenz, J. P. Lipid membranes modulate the exercise of RNA by way of sequence-dependent interactions. Proceedings of the Nationwide Academy of Sciences. 119, https://doi.org/10.1073/pnas.2119235119 (2022).

  • Desai, R., Kilburn, D., Lee, H. T. & Woodson, S. A. Elevated ribozyme exercise in crowded options. J. Biol. Chem. 289, 2972–2977 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lee, H. T., Kilburn, D., Behrouzi, R., Briber, R. M. & Woodson, S. A. Molecular crowding overcomes the destabilizing results of mutations in a bacterial ribozyme. Nucleic Acids Res. 43, 1170–1176 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Paudel, B. P. & Rueda, D. Molecular crowding accelerates ribozyme docking and catalysis. J. Am. Chem. Soc. 136, 16700–16703 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paudel, B. P., Fiorini, E., Börner, R., Sigel, R. Ok. O. & Rueda, D. S. Optimum molecular crowding accelerates group II intron folding and maximizes catalysis. Proc. Natl Acad. Sci. 115, 11917–11922 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Peng, H., Lelievre, A., Landenfeld, Ok., Müller, S. & Chen, I. A. Vesicle encapsulation stabilizes intermolecular affiliation and construction formation of purposeful RNA and DNA. Curr. Biol. 32, 86–96.e6 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moga, A., Yandrapalli, N., Dimova, R. & Robinson, T. Optimization of the inverted emulsion technique for top‐yield manufacturing of biomimetic big unilamellar vesicles. ChemBioChem 20, 2674–2682 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Monnard, P. A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Affect of ionic inorganic solutes on self-assembly and polymerization processes associated to early types of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Budin, I. & Szostak, J. W. Bodily results underlying the transition from primitive to trendy cell membranes. Proc. Natl Acad. Sci. 108, 5249–5254 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jin, L., Kamat, N. P., Jena, S. & Szostak, J. W. Fatty acid/phospholipid blended membranes: a possible intermediate state in protocellular evolution. Small 14, 1704077 (2018).

    Article 

    Google Scholar
     

  • Costa, A. P., Xu, X. & Burgess, D. J. Freeze-anneal-thaw biking of unilamellar liposomes: impact on encapsulation effectivity. Pharm. Res. 31, 97–103 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kibbe, W. A. OligoCalc: a web based oligonucleotide properties calculator. Nucleic Acids Res. 35, W43–W46 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles