google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
19.6 C
New York
Tuesday, June 6, 2023

Polymeric core-crosslinked particles ready by way of a nanoemulsion-mediated course of: from particle design and structural characterization to in vivo habits in chemotherapy


  • van Rijt SH, Sadler PJ. Present functions and future potential for bioinorganic chemistry within the improvement of anticancer medicine. Drug Discov At this time. 2009;14:1089–97. https://doi.org/10.1016/j.drudis.2009.09.003

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ghosh S. Cisplatin: The primary metallic based mostly anticancer drug. Bioorg Chem. 2019;88:102925 https://doi.org/10.1016/j.bioorg.2019.102925

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Heishima Ok, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, et al. Petasin potently inhibits mitochondrial complicated I–based mostly metabolism that helps tumor progress and metastasis. J Clin Investig. 2021;131:e139933 https://doi.org/10.1172/JCI139933

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the great, the dangerous and the ugly impact. Curr Med Chem. 2009;16:3267–85. https://doi.org/10.2174/092986709788803312.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug supply to most cancers: An outline. J Drug Supply Sci Technol. 2020;56:101549 https://doi.org/10.1016/j.jddst.2020.101549

    Article 
    CAS 

    Google Scholar
     

  • Lee JS, Feijen J. Polymersomes for drug supply: Design, formation and characterization. J Contr Launch. 2012;161:473–83. https://doi.org/10.1016/j.jconrel.2011.10.005

    Article 
    CAS 

    Google Scholar
     

  • Liu Y, Castro Bravo KM, Liu J. Focused liposomal drug supply: a nanoscience and biophysical perspective. Nanoscale Horizons. 2021;6:78–94. https://doi.org/10.1039/D0NH00605J

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug supply: An perception of the strategies for his or her characterization and evaluation in biorelevant situations. J Contr Launch. 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031

    Article 
    CAS 

    Google Scholar
     

  • Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the supply of poorly soluble medicine: From nanoformulation to scientific approval. Adv Drug Supply Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009

    Article 
    CAS 

    Google Scholar
     

  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an replace on anticancer molecular motion, toxicity and novel drug supply techniques. J Pharmacy Pharmacol. 2012;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x. (acccessed 1/20/2023)

    Article 
    CAS 

    Google Scholar
     

  • Kataoka Ok, Harada A, Nagasaki Y. Block copolymer micelles for drug supply: Design, characterization and organic significance. Adv Drug Supply Rev. 2012;64:37–48. https://doi.org/10.1016/j.addr.2012.09.013

    Article 

    Google Scholar
     

  • Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Synthetic Organelles. Acc Chem Res. 2011;44:1039–49. https://doi.org/10.1021/ar200036k

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nishimura T, Akiyoshi Ok. Biotransporting Biocatalytic Reactors towards Therapeutic Nanofactories. Adv Sci. 2018;5:1800801 https://doi.org/10.1002/advs.201800801

    Article 
    CAS 

    Google Scholar
     

  • Yue J, Liu S, Xie Z, Xing Y, Jing X. Dimension-dependent biodistribution and antitumor efficacy of polymer micelle drug supply techniques. J Mater Chem B. 2013;1:4273–80. https://doi.org/10.1039/C3TB20296H

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46:6387–92.

    CAS 
    PubMed 

    Google Scholar
     

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a assessment. J Managed Launch. 2000;65:271–84. https://doi.org/10.1016/S0168-3659(99)00248-5

    Article 
    CAS 

    Google Scholar
     

  • Cabral H, Matsumoto Y, Mizuno Ok, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours relies on dimension. Nat Nanotechnol. 2011;6:815–23. https://doi.org/10.1038/nnano.2011.166

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into strong tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kingston BR, Lin ZP, Ouyang B, MacMillan P, Ngai J, Syed AM, et al. Particular Endothelial Cells Govern Nanoparticle Entry into Stable Tumors. ACS Nano. 2021;15:14080–94. https://doi.org/10.1021/acsnano.1c04510

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matsumura Y. Preclinical and scientific research of NK012, an SN-38-incorporating polymeric micelles, which is designed based mostly on EPR impact. Adv Drug Supply Rev. 2011;63:184–92. https://doi.org/10.1016/j.addr.2010.05.008

    Article 
    CAS 

    Google Scholar
     

  • Maeda H. The thirty fifth Anniversary of the Discovery of EPR Impact: A New Wave of Nanomedicines for Tumor-Focused Drug Supply—Private Remarks and Future Prospects. J Personalised Med. 2021;11:229.

    Article 

    Google Scholar
     

  • Blanco E, Shen H, Ferrari M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • D’souza AA, Shegokar R. Polyethylene glycol (PEG): a flexible polymer for pharmaceutical functions. Exp Opin Drug Supply. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485

    Article 
    CAS 

    Google Scholar
     

  • Matsumura Y. 35 years of discussions with Prof. Maeda on the EPR impact and future instructions. J Managed Launch. 2022;348:966–9. https://doi.org/10.1016/j.jconrel.2022.06.035

    Article 
    CAS 

    Google Scholar
     

  • Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, et al. To PEGylate or to not PEGylate: Immunological properties of nanomedicine’s hottest part, polyethylene glycol and its alternate options. Adv Drug Supply Rev. 2022;180:114079 https://doi.org/10.1016/j.addr.2021.114079

    Article 
    CAS 

    Google Scholar
     

  • Fujii S, Sakuragi M, Sakurai Ok. Characterizing PEG. Chains Tethered onto Micelles and Liposomes Utilized as Drug Supply Autos Utilizing Scattering Methods. Management of Amphiphile Self-Assembling on the Molecular Stage: Supra-Molecular Assemblies with Tuned Physicochemical Properties for Supply Purposes, ACS Symposium Collection. 1271. American Chemical Society; 2017. p. 115–29. https://doi.org/10.1021/bk-2017-1271.ch005.

  • Torchilin VP. Latest advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. https://doi.org/10.1038/nrd1632

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Allergenic elements of the mRNA-1273 vaccine for COVID-19: Attainable involvement of polyethylene glycol and IgG-mediated complement activation. Allergy. 2021;76:3307–13. https://doi.org/10.1111/all.14794

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour supply. Nat Mater. 2020;19:1362–71. https://doi.org/10.1038/s41563-020-0755-z

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu J, Zeng F, Allen C. In vivo destiny of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharma Biopharma. 2007;65:309–19. https://doi.org/10.1016/j.ejpb.2006.11.010

    Article 
    CAS 

    Google Scholar
     

  • Ebrahim Attia AB, Yang C, Tan JPK, Gao S, Williams DF, Hedrick JL, et al. The impact of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials. 2013;34:3132–40. https://doi.org/10.1016/j.biomaterials.2013.01.042

    Article 
    CAS 

    Google Scholar
     

  • Wang Y, Pisapati AV, Zhang XF, Cheng X. Latest Developments in Nanomaterial-Based mostly Shear-Delicate Drug Supply Techniques. Adv Healthcare Mater. 2021;10:2002196 https://doi.org/10.1002/adhm.202002196

    Article 
    CAS 

    Google Scholar
     

  • Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano At this time. 2012;7:53–65. https://doi.org/10.1016/j.nantod.2012.01.002

    Article 
    CAS 

    Google Scholar
     

  • Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, et al. Actual-Time Ratiometric Imaging of Micelles Meeting State in a Microfluidic Most cancers-on-a-Chip. ACS Appl Bio Mater. 2021;4:669–81. https://doi.org/10.1021/acsabm.0c01209

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Solar X, Wang G, Zhang H, Hu S, Liu X, Tang J, et al. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Most cancers Drug Supply. ACS Nano. 2018;12:6179–92. https://doi.org/10.1021/acsnano.8b02830

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: useful nanostructures of nice potential and flexibility. Chem Soc Rev. 2006;35:1068–83. https://doi.org/10.1039/B514858H

    Article 
    PubMed 

    Google Scholar
     

  • Liao C, Chen Y, Yao Y, Zhang S, Gu Z, Yu X. Cross-Linked Small-Molecule Micelle-Based mostly Drug Supply System: Idea, Synthesis, and Organic Analysis. Chem Mater. 2016;28:7757–64. https://doi.org/10.1021/acs.chemmater.6b02965

    Article 
    CAS 

    Google Scholar
     

  • Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-Cross-Linked Nanoparticles Scale back Neuroinflammation and Enhance End result in a Mouse Mannequin of Traumatic Mind Damage. ACS Nano. 2017;11:8600–11. https://doi.org/10.1021/acsnano.7b03426

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai H-C, et al. pH/redox-responsive core cross-linked based mostly prodrug micelle for enhancing micellar stability and controlling supply of chemo medicine: An efficient mixture drug supply platform for most cancers remedy. Biomater Adv. 2022;139:213015 https://doi.org/10.1016/j.bioadv.2022.213015

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Father or mother LR, Bakalis E, Ramírez-Hernández A, Kammeyer JK, Park C, de Pablo J, et al. Immediately Observing Micelle Fusion and Development in Answer by Liquid-Cell Transmission Electron Microscopy. J Am Chem Soc. 2017;139:17140–51. https://doi.org/10.1021/jacs.7b09060

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tian Q, Fei C, Yin H, Feng Y. Stimuli-responsive polymer wormlike micelles. Prog Polymer Sci. 2019;89:108–32. https://doi.org/10.1016/j.progpolymsci.2018.10.001

    Article 
    CAS 

    Google Scholar
     

  • Lund R, Willner L, Monkenbusch M, Panine P, Narayanan T, Colmenero J, et al. Structural Remark and Kinetic Pathway within the Formation of Polymeric Micelles. Phys Rev Lett. 2009;102:188301 https://doi.org/10.1103/PhysRevLett.102.188301

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lund R, Brun G, Chevallier E, Narayanan T, Tribet C. Kinetics of Photocontrollable Micelles: Mild-Induced Self-Meeting and Disassembly of Azobenzene-Based mostly Surfactants Revealed by TR-SAXS. Langmuir. 2016;32:2539–48. https://doi.org/10.1021/acs.langmuir.5b04711

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka Ok. Core-Polymerized Reactive Micelles from Heterotelechelic Amphiphilic Block Copolymers. Macromolecules. 1999;32:1140–6. https://doi.org/10.1021/ma9815962

    Article 
    CAS 

    Google Scholar
     

  • Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for supply of anticancer medicine. J Managed Launch. 2006;114:163–74. https://doi.org/10.1016/j.jconrel.2006.06.015

    Article 
    CAS 

    Google Scholar
     

  • Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo research. Biomaterials. 2007;28:5581–93. https://doi.org/10.1016/j.biomaterials.2007.08.047

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanaka R, Arai Ok, Matsuno J, Soejima M, Lee JH, Takahashi R, et al. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their strong stability in vivo. Polymer Chem. 2020;11:4408–16. https://doi.org/10.1039/D0PY00610F

    Article 
    CAS 

    Google Scholar
     

  • Matsuno J, Kanamaru T, Arai Ok, Tanaka R, Lee JH, Takahashi R, et al. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics relying on the structural traits. J Managed Launch. 2020;324:405–12. https://doi.org/10.1016/j.jconrel.2020.05.035

    Article 
    CAS 

    Google Scholar
     

  • Zheng P, McCarthy TJ. D4H/D4V Silicone: A Reproduction Materials with A number of Benefits for Nanoimprint Lithography and Capillary Power Lithography. Langmuir. 2011;27:7976–9. https://doi.org/10.1021/la201141k

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujii S, Yamada S, Matsumoto S, Kubo G, Yoshida Ok, Tabata E, et al. Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Akin to Common Polyhedra. Sci Rep. 2017;7:44494 https://doi.org/10.1038/srep44494

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Klein M, Menta M, Dacoba TG, Crecente-Campo J, Alonso MJ, Dupin D, et al. Superior nanomedicine characterization by DLS and AF4-UV-MALS: Utility to a HIV nanovaccine. J Pharma Biomed Analy. 2020;179:113017 https://doi.org/10.1016/j.jpba.2019.113017

    Article 
    CAS 

    Google Scholar
     

  • Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Separation and characterization of liposomes utilizing uneven move field-flow fractionation with on-line multi-angle mild scattering detection. J Chromatogr A. 2021;1636:461798 https://doi.org/10.1016/j.chroma.2020.461798

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Considerably Exceeding the Minimal for Brush Conformation. Mol Pharma. 2014;11:1250–8. https://doi.org/10.1021/mp400703d

    Article 
    CAS 

    Google Scholar
     

  • Du X-J, Wang J-L, Liu W-W, Yang J-X, Solar C-Y, Solar R, et al. Regulating the floor poly(ethylene glycol) density of polymeric nanoparticles and evaluating its position in drug supply in vivo. Biomaterials. 2015;69:1–11. https://doi.org/10.1016/j.biomaterials.2015.07.048

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Impact of physicochemical and floor properties on in vivo destiny of drug nanocarriers. Adv Drug Supply Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002

    Article 
    CAS 

    Google Scholar
     

  • Cao Z-T, Gan L-Q, Jiang W, Wang J-L, Zhang H-B, Zhang Y, et al. Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano. 2020;14:3563–75. https://doi.org/10.1021/acsnano.9b10015

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang J-L, Du X-J, Yang J-X, Shen S, Li H-J, Luo Y-L, et al. The impact of floor poly(ethylene glycol) size on in vivo drug supply behaviors of polymeric nanoparticles. Biomaterials. 2018;182:104–13. https://doi.org/10.1016/j.biomaterials.2018.08.022

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT Nanoparticles: The Impression of PEG Density on Protein Binding, Macrophage Affiliation, Biodistribution, and Pharmacokinetics. Nano Lett. 2012;12:5304–10. https://doi.org/10.1021/nl302638g

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanamaru T, Sakurai Ok, Fujii S. Impression of Polyethylene Glycol (PEG) Conformations on the In Vivo Destiny and Drug Launch Conduct of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules. 2022;23:3909–18. https://doi.org/10.1021/acs.biomac.2c00730

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nagarajan R, Ruckenstein E. Idea of surfactant self-assembly: a predictive molecular thermodynamic method. Langmuir. 1991;7:2934–69. https://doi.org/10.1021/la00060a012

    Article 
    CAS 

    Google Scholar
     

  • Li Y, Xiao Ok, Luo J, Xiao W, Lee JS, Gonik AM, et al. Effectively-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel supply. Biomaterials. 2011;32:6633–45. https://doi.org/10.1016/j.biomaterials.2011.05.050

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao J, Yan C, Chen Z, Liu J, Track H, Wang W, et al. Twin-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug supply. J Coll Interfac Sci. 2019;540:66–77. https://doi.org/10.1016/j.jcis.2019.01.021

    Article 
    CAS 

    Google Scholar
     

  • Talelli M, Barz M, Rijcken CJ, Kiessling F, Hennink WE, Lammers T. Core-Crosslinked Polymeric Micelles: Rules, Preparation, Biomedical Purposes and Scientific Translation. Nano At this time. 2015;10:93–117. https://doi.org/10.1016/j.nantod.2015.01.005. From NLM

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zalba S, ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Going through the PEG dilemma. J Managed Launch. 2022;351:22–36. https://doi.org/10.1016/j.jconrel.2022.09.002

    Article 
    CAS 

    Google Scholar
     

  • Miura Y, Hoshino Y, Seto H. Glycopolymer Nanobiotechnology. Chem Rev. 2016;116:1673–92. https://doi.org/10.1021/acs.chemrev.5b00247

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Lively Tumor-Concentrating on Polymeric Nanoparticles for Most cancers Chemotherapy. Biomacromolecules. 2014;15:1955–69. https://doi.org/10.1021/bm5003009

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S. Focused most cancers drug supply with aptamer-functionalized polymeric nanoparticles. J Drug Concentrating on. 2019;27:292–9. https://doi.org/10.1080/1061186X.2018.1491978

    Article 
    CAS 

    Google Scholar
     

  • Li W, Liu Q, Liu L. Antifouling Gold Surfaces Grafted with Aspartic Acid and Glutamic Acid Based mostly Zwitterionic Polymer Brushes. Langmuir. 2014;30:12619–26. https://doi.org/10.1021/la502789v

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alswieleh AM, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, et al. Zwitterionic Poly(amino acid methacrylate) Brushes. J Am Chem Soc. 2014;136:9404–13. https://doi.org/10.1021/ja503400r

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in most cancers: Companions in crime. Semin Most cancers Biol. 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Häfliger P, Charles R-P. The L-Sort Amino Acid Transporter LAT1—An Rising Goal in Most cancers. Int J Mol Sci. 2019;20:2428.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yamada N, Honda Y, Takemoto H, Nomoto T, Matsui M, Tomoda Ok, et al. Engineering Tumour Cell-Binding Artificial Polymers with Sensing Dense Transporters Related to Aberrant Glutamine Metabolism. Sc Rep. 2017;7:6077 https://doi.org/10.1038/s41598-017-06438-y

    Article 
    CAS 

    Google Scholar
     

  • Takano S, Sakurai Ok, Fujii S. Internalization into most cancers cells of zwitterionic amino acid polymers by way of amino acid transporter recognition. Polym Chem. 2021;12:6083–7. https://doi.org/10.1039/D1PY01010G

    Article 
    CAS 

    Google Scholar
     

  • Leiske MN, Mazrad ZAI, Zelcak A, Wahi Ok, Davis TP, McCarroll JA, et al. Zwitterionic Amino Acid-Derived Polyacrylates as Good Supplies Exhibiting Mobile Specificity and Therapeutic Exercise. Biomacromolecules. 2022;23:2374–87. https://doi.org/10.1021/acs.biomac.2c00143

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fujii S, Sakurai Ok. Zwitterionic Amino Acid Polymer-Grafted Core-Crosslinked Particle towards Tumor Supply. Biomacromolecules. 2022;23:3968–77. https://doi.org/10.1021/acs.biomac.2c00803

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao L-P, Chen S-Y, Zheng R-R, Kong R-J, Rao X-N, Chen AL, et al. Self-Supply Nanomedicine for Glutamine-Hunger Enhanced Photodynamic Tumor Remedy. Adv Healthcare Mater. 2022;11:2102038 https://doi.org/10.1002/adhm.202102038. (acccessed 2023/01/29)

    Article 
    CAS 

    Google Scholar
     

  • Müllner M, Yang Ok, Kaur A, New EJ. Facet-ratio-dependent interplay of molecular polymer brushes and multicellular tumour spheroids. Polym Chem. 2018;9:3461–5. https://doi.org/10.1039/C8PY00703A

    Article 

    Google Scholar
     

  • Nakamura H, Koziolová E, Chytil P, Etrych T, Haratake M, Maeda H. Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Mol Pharma. 2019;16:3452–9. https://doi.org/10.1021/acs.molpharmaceut.9b00248

    Article 
    CAS 

    Google Scholar
     

  • Fujii S, Takano S, Nakazawa Ok, Sakurai Ok. Impression of Zwitterionic Polymers on the Tumor Permeability of Molecular Bottlebrush-Based mostly Nanoparticles. Biomacromolecules. 2022;23:2846–55. https://doi.org/10.1021/acs.biomac.2c00216

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ozer I, Kelly G, Gu R, Li X, Zakharov N, Sirohi P, et al. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. Adv Sci (Weinh). 2022;9:e2103672 https://doi.org/10.1002/advs.202103672.

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles