van Rijt SH, Sadler PJ. Present functions and future potential for bioinorganic chemistry within the improvement of anticancer medicine. Drug Discov At this time. 2009;14:1089–97. https://doi.org/10.1016/j.drudis.2009.09.003
Ghosh S. Cisplatin: The primary metallic based mostly anticancer drug. Bioorg Chem. 2019;88:102925 https://doi.org/10.1016/j.bioorg.2019.102925
Heishima Ok, Sugito N, Soga T, Nishikawa M, Ito Y, Honda R, et al. Petasin potently inhibits mitochondrial complicated I–based mostly metabolism that helps tumor progress and metastasis. J Clin Investig. 2021;131:e139933 https://doi.org/10.1172/JCI139933
Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS, et al. Doxorubicin: the great, the dangerous and the ugly impact. Curr Med Chem. 2009;16:3267–85. https://doi.org/10.2174/092986709788803312.
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug supply to most cancers: An outline. J Drug Supply Sci Technol. 2020;56:101549 https://doi.org/10.1016/j.jddst.2020.101549
Lee JS, Feijen J. Polymersomes for drug supply: Design, formation and characterization. J Contr Launch. 2012;161:473–83. https://doi.org/10.1016/j.jconrel.2011.10.005
Liu Y, Castro Bravo KM, Liu J. Focused liposomal drug supply: a nanoscience and biophysical perspective. Nanoscale Horizons. 2021;6:78–94. https://doi.org/10.1039/D0NH00605J
Ghezzi M, Pescina S, Padula C, Santi P, Del Favero E, Cantù L, et al. Polymeric micelles in drug supply: An perception of the strategies for his or her characterization and evaluation in biorelevant situations. J Contr Launch. 2021;332:312–36. https://doi.org/10.1016/j.jconrel.2021.02.031
Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the supply of poorly soluble medicine: From nanoformulation to scientific approval. Adv Drug Supply Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an replace on anticancer molecular motion, toxicity and novel drug supply techniques. J Pharmacy Pharmacol. 2012;65:157–70. https://doi.org/10.1111/j.2042-7158.2012.01567.x. (acccessed 1/20/2023)
Kataoka Ok, Harada A, Nagasaki Y. Block copolymer micelles for drug supply: Design, characterization and organic significance. Adv Drug Supply Rev. 2012;64:37–48. https://doi.org/10.1016/j.addr.2012.09.013
Tanner P, Baumann P, Enea R, Onaca O, Palivan C, Meier W. Polymeric Vesicles: From Drug Carriers to Nanoreactors and Synthetic Organelles. Acc Chem Res. 2011;44:1039–49. https://doi.org/10.1021/ar200036k
Nishimura T, Akiyoshi Ok. Biotransporting Biocatalytic Reactors towards Therapeutic Nanofactories. Adv Sci. 2018;5:1800801 https://doi.org/10.1002/advs.201800801
Yue J, Liu S, Xie Z, Xing Y, Jing X. Dimension-dependent biodistribution and antitumor efficacy of polymer micelle drug supply techniques. J Mater Chem B. 2013;1:4273–80. https://doi.org/10.1039/C3TB20296H
Matsumura Y, Maeda H. A brand new idea for macromolecular therapeutics in most cancers chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Most cancers Res. 1986;46:6387–92.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori Ok. Tumor vascular permeability and the EPR impact in macromolecular therapeutics: a assessment. J Managed Launch. 2000;65:271–84. https://doi.org/10.1016/S0168-3659(99)00248-5
Cabral H, Matsumoto Y, Mizuno Ok, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours relies on dimension. Nat Nanotechnol. 2011;6:815–23. https://doi.org/10.1038/nnano.2011.166
Sindhwani S, Syed AM, Ngai J, Kingston BR, Maiorino L, Rothschild J, et al. The entry of nanoparticles into strong tumours. Nat Mater. 2020;19:566–75. https://doi.org/10.1038/s41563-019-0566-2
Kingston BR, Lin ZP, Ouyang B, MacMillan P, Ngai J, Syed AM, et al. Particular Endothelial Cells Govern Nanoparticle Entry into Stable Tumors. ACS Nano. 2021;15:14080–94. https://doi.org/10.1021/acsnano.1c04510
Matsumura Y. Preclinical and scientific research of NK012, an SN-38-incorporating polymeric micelles, which is designed based mostly on EPR impact. Adv Drug Supply Rev. 2011;63:184–92. https://doi.org/10.1016/j.addr.2010.05.008
Maeda H. The thirty fifth Anniversary of the Discovery of EPR Impact: A New Wave of Nanomedicines for Tumor-Focused Drug Supply—Private Remarks and Future Prospects. J Personalised Med. 2021;11:229.
Blanco E, Shen H, Ferrari M. Rules of nanoparticle design for overcoming organic boundaries to drug supply. Nat Biotechnol. 2015;33:941–51. https://doi.org/10.1038/nbt.3330
D’souza AA, Shegokar R. Polyethylene glycol (PEG): a flexible polymer for pharmaceutical functions. Exp Opin Drug Supply. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485
Matsumura Y. 35 years of discussions with Prof. Maeda on the EPR impact and future instructions. J Managed Launch. 2022;348:966–9. https://doi.org/10.1016/j.jconrel.2022.06.035
Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, et al. To PEGylate or to not PEGylate: Immunological properties of nanomedicine’s hottest part, polyethylene glycol and its alternate options. Adv Drug Supply Rev. 2022;180:114079 https://doi.org/10.1016/j.addr.2021.114079
Fujii S, Sakuragi M, Sakurai Ok. Characterizing PEG. Chains Tethered onto Micelles and Liposomes Utilized as Drug Supply Autos Utilizing Scattering Methods. Management of Amphiphile Self-Assembling on the Molecular Stage: Supra-Molecular Assemblies with Tuned Physicochemical Properties for Supply Purposes, ACS Symposium Collection. 1271. American Chemical Society; 2017. p. 115–29. https://doi.org/10.1021/bk-2017-1271.ch005.
Torchilin VP. Latest advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4:145–60. https://doi.org/10.1038/nrd1632
Klimek L, Novak N, Cabanillas B, Jutel M, Bousquet J, Akdis CA. Allergenic elements of the mRNA-1273 vaccine for COVID-19: Attainable involvement of polyethylene glycol and IgG-mediated complement activation. Allergy. 2021;76:3307–13. https://doi.org/10.1111/all.14794
Ouyang B, Poon W, Zhang Y-N, Lin ZP, Kingston BR, Tavares AJ, et al. The dose threshold for nanoparticle tumour supply. Nat Mater. 2020;19:1362–71. https://doi.org/10.1038/s41563-020-0755-z
Liu J, Zeng F, Allen C. In vivo destiny of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharma Biopharma. 2007;65:309–19. https://doi.org/10.1016/j.ejpb.2006.11.010
Ebrahim Attia AB, Yang C, Tan JPK, Gao S, Williams DF, Hedrick JL, et al. The impact of kinetic stability on biodistribution and anti-tumor efficacy of drug-loaded biodegradable polymeric micelles. Biomaterials. 2013;34:3132–40. https://doi.org/10.1016/j.biomaterials.2013.01.042
Wang Y, Pisapati AV, Zhang XF, Cheng X. Latest Developments in Nanomaterial-Based mostly Shear-Delicate Drug Supply Techniques. Adv Healthcare Mater. 2021;10:2002196 https://doi.org/10.1002/adhm.202002196
Owen SC, Chan DPY, Shoichet MS. Polymeric micelle stability. Nano At this time. 2012;7:53–65. https://doi.org/10.1016/j.nantod.2012.01.002
Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, et al. Actual-Time Ratiometric Imaging of Micelles Meeting State in a Microfluidic Most cancers-on-a-Chip. ACS Appl Bio Mater. 2021;4:669–81. https://doi.org/10.1021/acsabm.0c01209
Solar X, Wang G, Zhang H, Hu S, Liu X, Tang J, et al. The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Most cancers Drug Supply. ACS Nano. 2018;12:6179–92. https://doi.org/10.1021/acsnano.8b02830
O’Reilly RK, Hawker CJ, Wooley KL. Cross-linked block copolymer micelles: useful nanostructures of nice potential and flexibility. Chem Soc Rev. 2006;35:1068–83. https://doi.org/10.1039/B514858H
Liao C, Chen Y, Yao Y, Zhang S, Gu Z, Yu X. Cross-Linked Small-Molecule Micelle-Based mostly Drug Supply System: Idea, Synthesis, and Organic Analysis. Chem Mater. 2016;28:7757–64. https://doi.org/10.1021/acs.chemmater.6b02965
Yoo D, Magsam AW, Kelly AM, Stayton PS, Kievit FM, Convertine AJ. Core-Cross-Linked Nanoparticles Scale back Neuroinflammation and Enhance End result in a Mouse Mannequin of Traumatic Mind Damage. ACS Nano. 2017;11:8600–11. https://doi.org/10.1021/acsnano.7b03426
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai H-C, et al. pH/redox-responsive core cross-linked based mostly prodrug micelle for enhancing micellar stability and controlling supply of chemo medicine: An efficient mixture drug supply platform for most cancers remedy. Biomater Adv. 2022;139:213015 https://doi.org/10.1016/j.bioadv.2022.213015
Father or mother LR, Bakalis E, Ramírez-Hernández A, Kammeyer JK, Park C, de Pablo J, et al. Immediately Observing Micelle Fusion and Development in Answer by Liquid-Cell Transmission Electron Microscopy. J Am Chem Soc. 2017;139:17140–51. https://doi.org/10.1021/jacs.7b09060
Tian Q, Fei C, Yin H, Feng Y. Stimuli-responsive polymer wormlike micelles. Prog Polymer Sci. 2019;89:108–32. https://doi.org/10.1016/j.progpolymsci.2018.10.001
Lund R, Willner L, Monkenbusch M, Panine P, Narayanan T, Colmenero J, et al. Structural Remark and Kinetic Pathway within the Formation of Polymeric Micelles. Phys Rev Lett. 2009;102:188301 https://doi.org/10.1103/PhysRevLett.102.188301
Lund R, Brun G, Chevallier E, Narayanan T, Tribet C. Kinetics of Photocontrollable Micelles: Mild-Induced Self-Meeting and Disassembly of Azobenzene-Based mostly Surfactants Revealed by TR-SAXS. Langmuir. 2016;32:2539–48. https://doi.org/10.1021/acs.langmuir.5b04711
Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka Ok. Core-Polymerized Reactive Micelles from Heterotelechelic Amphiphilic Block Copolymers. Macromolecules. 1999;32:1140–6. https://doi.org/10.1021/ma9815962
Bontha S, Kabanov AV, Bronich TK. Polymer micelles with cross-linked ionic cores for supply of anticancer medicine. J Managed Launch. 2006;114:163–74. https://doi.org/10.1016/j.jconrel.2006.06.015
Rijcken CJ, Snel CJ, Schiffelers RM, van Nostrum CF, Hennink WE. Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo research. Biomaterials. 2007;28:5581–93. https://doi.org/10.1016/j.biomaterials.2007.08.047
Tanaka R, Arai Ok, Matsuno J, Soejima M, Lee JH, Takahashi R, et al. Furry nanoparticles: synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles and their strong stability in vivo. Polymer Chem. 2020;11:4408–16. https://doi.org/10.1039/D0PY00610F
Matsuno J, Kanamaru T, Arai Ok, Tanaka R, Lee JH, Takahashi R, et al. Synthesis and characterization of nanoemulsion-mediated core crosslinked nanoparticles, and in vivo pharmacokinetics relying on the structural traits. J Managed Launch. 2020;324:405–12. https://doi.org/10.1016/j.jconrel.2020.05.035
Zheng P, McCarthy TJ. D4H/D4V Silicone: A Reproduction Materials with A number of Benefits for Nanoimprint Lithography and Capillary Power Lithography. Langmuir. 2011;27:7976–9. https://doi.org/10.1021/la201141k
Fujii S, Yamada S, Matsumoto S, Kubo G, Yoshida Ok, Tabata E, et al. Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Akin to Common Polyhedra. Sci Rep. 2017;7:44494 https://doi.org/10.1038/srep44494
Klein M, Menta M, Dacoba TG, Crecente-Campo J, Alonso MJ, Dupin D, et al. Superior nanomedicine characterization by DLS and AF4-UV-MALS: Utility to a HIV nanovaccine. J Pharma Biomed Analy. 2020;179:113017 https://doi.org/10.1016/j.jpba.2019.113017
Écija-Arenas Á, Román-Pizarro V, Fernández-Romero JM. Separation and characterization of liposomes utilizing uneven move field-flow fractionation with on-line multi-angle mild scattering detection. J Chromatogr A. 2021;1636:461798 https://doi.org/10.1016/j.chroma.2020.461798
Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading Immune Cell Uptake and Clearance Requires PEG Grafting at Densities Considerably Exceeding the Minimal for Brush Conformation. Mol Pharma. 2014;11:1250–8. https://doi.org/10.1021/mp400703d
Du X-J, Wang J-L, Liu W-W, Yang J-X, Solar C-Y, Solar R, et al. Regulating the floor poly(ethylene glycol) density of polymeric nanoparticles and evaluating its position in drug supply in vivo. Biomaterials. 2015;69:1–11. https://doi.org/10.1016/j.biomaterials.2015.07.048
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Impact of physicochemical and floor properties on in vivo destiny of drug nanocarriers. Adv Drug Supply Rev. 2019;143:3–21. https://doi.org/10.1016/j.addr.2019.01.002
Cao Z-T, Gan L-Q, Jiang W, Wang J-L, Zhang H-B, Zhang Y, et al. Protein Binding Affinity of Polymeric Nanoparticles as a Direct Indicator of Their Pharmacokinetics. ACS Nano. 2020;14:3563–75. https://doi.org/10.1021/acsnano.9b10015
Wang J-L, Du X-J, Yang J-X, Shen S, Li H-J, Luo Y-L, et al. The impact of floor poly(ethylene glycol) size on in vivo drug supply behaviors of polymeric nanoparticles. Biomaterials. 2018;182:104–13. https://doi.org/10.1016/j.biomaterials.2018.08.022
Perry JL, Reuter KG, Kai MP, Herlihy KP, Jones SW, Luft JC, et al. PEGylated PRINT Nanoparticles: The Impression of PEG Density on Protein Binding, Macrophage Affiliation, Biodistribution, and Pharmacokinetics. Nano Lett. 2012;12:5304–10. https://doi.org/10.1021/nl302638g
Kanamaru T, Sakurai Ok, Fujii S. Impression of Polyethylene Glycol (PEG) Conformations on the In Vivo Destiny and Drug Launch Conduct of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules. 2022;23:3909–18. https://doi.org/10.1021/acs.biomac.2c00730
Nagarajan R, Ruckenstein E. Idea of surfactant self-assembly: a predictive molecular thermodynamic method. Langmuir. 1991;7:2934–69. https://doi.org/10.1021/la00060a012
Li Y, Xiao Ok, Luo J, Xiao W, Lee JS, Gonik AM, et al. Effectively-defined, reversible disulfide cross-linked micelles for on-demand paclitaxel supply. Biomaterials. 2011;32:6633–45. https://doi.org/10.1016/j.biomaterials.2011.05.050
Zhao J, Yan C, Chen Z, Liu J, Track H, Wang W, et al. Twin-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug supply. J Coll Interfac Sci. 2019;540:66–77. https://doi.org/10.1016/j.jcis.2019.01.021
Talelli M, Barz M, Rijcken CJ, Kiessling F, Hennink WE, Lammers T. Core-Crosslinked Polymeric Micelles: Rules, Preparation, Biomedical Purposes and Scientific Translation. Nano At this time. 2015;10:93–117. https://doi.org/10.1016/j.nantod.2015.01.005. From NLM
Zalba S, ten Hagen TLM, Burgui C, Garrido MJ. Stealth nanoparticles in oncology: Going through the PEG dilemma. J Managed Launch. 2022;351:22–36. https://doi.org/10.1016/j.jconrel.2022.09.002
Miura Y, Hoshino Y, Seto H. Glycopolymer Nanobiotechnology. Chem Rev. 2016;116:1673–92. https://doi.org/10.1021/acs.chemrev.5b00247
Zhong Y, Meng F, Deng C, Zhong Z. Ligand-Directed Lively Tumor-Concentrating on Polymeric Nanoparticles for Most cancers Chemotherapy. Biomacromolecules. 2014;15:1955–69. https://doi.org/10.1021/bm5003009
Zununi Vahed S, Fathi N, Samiei M, Maleki Dizaj S, Sharifi S. Focused most cancers drug supply with aptamer-functionalized polymeric nanoparticles. J Drug Concentrating on. 2019;27:292–9. https://doi.org/10.1080/1061186X.2018.1491978
Li W, Liu Q, Liu L. Antifouling Gold Surfaces Grafted with Aspartic Acid and Glutamic Acid Based mostly Zwitterionic Polymer Brushes. Langmuir. 2014;30:12619–26. https://doi.org/10.1021/la502789v
Alswieleh AM, Cheng N, Canton I, Ustbas B, Xue X, Ladmiral V, et al. Zwitterionic Poly(amino acid methacrylate) Brushes. J Am Chem Soc. 2014;136:9404–13. https://doi.org/10.1021/ja503400r
Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in most cancers: Companions in crime. Semin Most cancers Biol. 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005
Häfliger P, Charles R-P. The L-Sort Amino Acid Transporter LAT1—An Rising Goal in Most cancers. Int J Mol Sci. 2019;20:2428.
Yamada N, Honda Y, Takemoto H, Nomoto T, Matsui M, Tomoda Ok, et al. Engineering Tumour Cell-Binding Artificial Polymers with Sensing Dense Transporters Related to Aberrant Glutamine Metabolism. Sc Rep. 2017;7:6077 https://doi.org/10.1038/s41598-017-06438-y
Takano S, Sakurai Ok, Fujii S. Internalization into most cancers cells of zwitterionic amino acid polymers by way of amino acid transporter recognition. Polym Chem. 2021;12:6083–7. https://doi.org/10.1039/D1PY01010G
Leiske MN, Mazrad ZAI, Zelcak A, Wahi Ok, Davis TP, McCarroll JA, et al. Zwitterionic Amino Acid-Derived Polyacrylates as Good Supplies Exhibiting Mobile Specificity and Therapeutic Exercise. Biomacromolecules. 2022;23:2374–87. https://doi.org/10.1021/acs.biomac.2c00143
Fujii S, Sakurai Ok. Zwitterionic Amino Acid Polymer-Grafted Core-Crosslinked Particle towards Tumor Supply. Biomacromolecules. 2022;23:3968–77. https://doi.org/10.1021/acs.biomac.2c00803
Zhao L-P, Chen S-Y, Zheng R-R, Kong R-J, Rao X-N, Chen AL, et al. Self-Supply Nanomedicine for Glutamine-Hunger Enhanced Photodynamic Tumor Remedy. Adv Healthcare Mater. 2022;11:2102038 https://doi.org/10.1002/adhm.202102038. (acccessed 2023/01/29)
Müllner M, Yang Ok, Kaur A, New EJ. Facet-ratio-dependent interplay of molecular polymer brushes and multicellular tumour spheroids. Polym Chem. 2018;9:3461–5. https://doi.org/10.1039/C8PY00703A
Nakamura H, Koziolová E, Chytil P, Etrych T, Haratake M, Maeda H. Superior Penetration and Cytotoxicity of HPMA Copolymer Conjugates of Pirarubicin in Tumor Cell Spheroid. Mol Pharma. 2019;16:3452–9. https://doi.org/10.1021/acs.molpharmaceut.9b00248
Fujii S, Takano S, Nakazawa Ok, Sakurai Ok. Impression of Zwitterionic Polymers on the Tumor Permeability of Molecular Bottlebrush-Based mostly Nanoparticles. Biomacromolecules. 2022;23:2846–55. https://doi.org/10.1021/acs.biomac.2c00216
Ozer I, Kelly G, Gu R, Li X, Zakharov N, Sirohi P, et al. Polyethylene Glycol-Like Brush Polymer Conjugate of a Protein Drug Does Not Induce an Antipolymer Immune Response and Has Enhanced Pharmacokinetics than Its Polyethylene Glycol Counterpart. Adv Sci (Weinh). 2022;9:e2103672 https://doi.org/10.1002/advs.202103672.