google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
15.5 C
New York
Wednesday, June 7, 2023

Prospects and challenges of inexperienced ammonia synthesis


  • Bell, T. E. & Torrente-Murciano, L. H2 manufacturing by way of ammonia decomposition utilizing non-noble metallic catalysts: a evaluation. Prime. Catal. 59, 1438–1457 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kojima, Y. Hydrogen storage supplies for hydrogen and vitality carriers. Int. J. Hydrog. Power 44, 18179–18192 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Smith, C., Hill, A. Ok. & Torrente-Murciano, L.Present and future function of Haber–Bosch ammonia in a carbon-free vitality panorama. Power Environ. Sci. 13, 331–344 (2020).

    Article 

    Google Scholar
     

  • Ravi, M. & Makepeace, J. W.Facilitating inexperienced ammonia manufacture beneath milder situations: what do heterogeneous catalyst formulations have to supply. Chem. Sci. 13, 890–908 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bañares-Alcántara, R. et al. Evaluation of Islanded Ammonia-based Power Storage Techniques (Univ. Oxford, 2015).

  • Wang, Q., Guo, J. & Chen, P. Current progress in direction of mild-condition ammonia synthesis. J. Power Chem. 36, 25–36 (2019).

    Article 

    Google Scholar
     

  • Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia manufacturing processes. Entrance. Power Res. 9, 580808 (2021).

    Article 

    Google Scholar
     

  • Bellenger, R., Darnajoux, X., Zhang, A. M. L. & Kraepiel, J. P. Organic nitrogen fixation by different nitrogenases in terrestrial ecosystems: a evaluation. Biogeochemistry 149, 53–73 (2020).

    Article 

    Google Scholar
     

  • Hywind Scotland (Equinor, 2022); https://www.equinor.com/vitality/hywind-scotland

  • Offshore Options (Siemens Power World, 2022); https://www.siemens-energy.com/world/en/choices/industrial-applications/oil-gas/offshore-solutions.html

  • Foster, S. L. et al. Catalysts for nitrogen discount to ammonia. Nat. Catal. 1, 490–500 (2018).

    Article 

    Google Scholar
     

  • Walter, M. D. Ammonia formation revisited. Nat. Chem. 14, 12–13 (2021).

    Article 

    Google Scholar
     

  • Mortensen, J. J., Hansen, L. B., Hammer, B. & Nørskov, J. Ok. et al. Nitrogen adsorption and dissociation on Fe(111). J. Catal. 182, 479–488 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Ertl, G. Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2007).

    Article 

    Google Scholar
     

  • Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Response mechanism and kinetics for ammonia synthesis on the Fe(111) floor. J. Am. Chem. Soc. 140, 6288–6297 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lin, R. J., Li, F. Y. & Chen, H. L. Computational investigation on adsorption and dissociation of the NH3 molecule on the Fe(111) floor. J. Phys. Chem. C 115, 521–528 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Egeberg, R. C. et al. N2 dissociation on Fe(110) and Fe/Ru(0001): what’s the function of steps? Surf. Sci. 491, 183–194 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Medford, A. J. et al. From the Sabatier precept to a predictive concept of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rod, T. H., Logadottir, A. & Nørskov, J. Ok. Ammonia synthesis at low temperatures. J. Chem. Phys. 112, 5343–5347 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Humphreys, J., Lan, R. & Tao, S. Growth and up to date progress on ammonia synthesis catalysts for Haber–Bosch course of. Adv. Power Maintain. Res. 2, 2000043 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jacobsen, C. J. H. et al. Catalyst design by interpolation within the periodic desk: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fang, H. et al. Challenges and alternatives of Ru-based catalysts towards the synthesis and utilization of ammonia. ACS Catal. 12, 3938–3954 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arnaiz del Pozo, C. & Cloete, S. Techno-economic evaluation of blue and inexperienced ammonia as vitality carriers in a low-carbon future. Power Convers. Manag. 255, 115312 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Ok. & Nagaoka, Ok. Boosting ammonia synthesis beneath gentle response situations by exact management of the fundamental oxide–Ru interface. Chem. Lett. 50, 687–696 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Sato, Ok. et al. Floor dynamics for creating extremely lively Ru websites for ammonia synthesis: accumulation of a low-crystalline, oxygen-deficient nanofraction. ACS Maintain. Chem. Eng. 8, 2726–2734 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lin, B. et al. Morphology impact of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis. Ind. Eng. Chem. Res. 57, 9127–9135 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Marakatti, V. S. & Gaigneaux, E. M. Current advances in heterogeneous catalysis for ammonia synthesis. ChemCatChem 12, 5838–5857 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Feng, J. et al. Sub-nanometer Ru clusters on ceria nanorods as environment friendly catalysts for ammonia synthesis beneath gentle situations. ACS Maintain. Chem. Eng. 10, 10181–10191 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Removing of hydrogen poisoning by electrostatically polar MgO help for low-pressure NH3 synthesis at a excessive price over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S. et al. Speedy interchangeable hydrogen, hydride, and proton species on the interface of transition metallic atom on oxide floor. J. Am. Chem. Soc. 143, 9105–9112 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitano, M. et al. Ammonia synthesis utilizing a steady electride as an electron donor and reversible hydrogen retailer. Nat. Chem. 4, 934–940 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kitano, M. et al. Electride help boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wu, J. et al. Intermetallic electride catalyst as a platform for ammonia synthesis. Angew. Chem. Int. Ed. 58, 825–829 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gong, Y. et al.LaRuSi electride disrupts the scaling relations for ammonia synthesis. Chem. Mater. 34, 1677–1685 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X. et al. Synergizing floor hydride species and Ru clusters on Sm2O3 for environment friendly ammonia synthesis. ACS Catal. 12, 2178–2190 (2022).

    Article 
    CAS 

    Google Scholar
     

  • García-García, F. R., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Position of B5-type websites in Ru catalysts used for the NH3 decomposition response. Prime. Catal. 52, 758–764 (2009).

    Article 

    Google Scholar
     

  • Shetty, S., Jansen, A. P. J. & Van Santen, R. A. Lively websites for N2 dissociation on ruthenium. J. Phys. Chem. C 112, 17768–17771 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wang, L., Chen, J., Ge, L., Rudolph, V. & Zhu, Z. Distinction within the cooperative interplay between carbon nanotubes and Ru particles loaded on their inside/exterior floor. RSC Adv. 3, 12641–12647 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Li, L. et al. Measurement sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8, 749–768 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, Y. et al. Unraveling the size-dependent impact of Ru-based catalysts on ammonia synthesis at gentle situations. J. Catal. 404, 501–511 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zeinalipour-Yazdi, C. D., Richard, C., Catlow, A., Hargreaves, J. S. J. & Laassiri, S. A comparative evaluation of the mechanisms of ammonia synthesis on varied catalysts utilizing density purposeful concept. R. Soc. Open Sci. 8, 210952 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kojima, R. & Aika, Ok. I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Chem Lett. 29, 514–515 (2003).

    Article 

    Google Scholar
     

  • Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Richard, C. & Catlow, A. Low-T mechanisms of ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 122, 6078–6082 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Laassiri, S., Richard, C. & Catlow, A. The mixing of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metallic nitrides. Phys. Chem. Chem. Phys. 20, 21803–21808 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, T.-N. et al. Emptiness-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ye, T.-N. et al. Contribution of nitrogen vacancies to ammonia synthesis over metallic nitride catalysts. J. Am. Chem. Soc. 142, 14374–14383 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, Q. et al. Ternary ruthenium complicated hydrides for ammonia synthesis by way of the associative mechanism. Nat. Catal. 4, 959–967 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Stable resolution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat. Commun. 11, 2001 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis by way of an associative mechanism. Nat. Commun. 9, 1610 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zheng, J. et al. Environment friendly non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low strain. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia by way of an associative mechanism. ACS Catal. 10, 9504–9514 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ye, T.-N. et al. Dissociative and associative concerted mechanism for ammonia synthesis over Co-based catalyst. J. Am. Chem. Soc. 143, 12857–12866 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhou, Y. et al. Integrating dissociative and associative routes for environment friendly ammonia synthesis over a TiCN-promoted Ru-based catalyst. ACS Catal. 12, 2651–2660 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Lai, Q. et al. Chemical looping primarily based ammonia manufacturing—a promising pathway for manufacturing of the noncarbon gasoline. Sci. Bull. 67, 2124–2138 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gao, W. et al. Manufacturing of ammonia by way of a chemical looping course of primarily based on metallic imides as nitrogen carriers. Nat. Power 3, 1067–1075 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Yan, H. et al. Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride. J. Phys. Chem. C 125, 6716–6722 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, S. et al. Molybdenum-based nitrogen service for ammonia manufacturing by way of a chemical looping route. Appl. Catal. B Environ. 312, 121404 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Tagawa, Ok., Gi, H., Shinzato, Ok., Miyaoka, H. & Ichikawa, T. Enchancment of kinetics of ammonia synthesis at ambient strain by the chemical looping strategy of lithium hydride. J. Phys. Chem. C 126, 2403–2409 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, C. et al. Excessive thermal stability Si–Al primarily based N-carrier for environment friendly and steady chemical looping ammonia era. Appl. Power 323, 119519 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Pereira, R. J. L., Hu, W. & Metcalfe, I. S. Impression of fuel–strong response thermodynamics on the efficiency of a chemical looping ammonia synthesis course of. Power Fuels 36, 9757–9767 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jain, M., Muthalathu, R. & Wu, X. Y. Electrified ammonia manufacturing as a commodity and vitality storage medium to attach the meals, vitality, and commerce sectors. iScience 25, 104724 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lazouski, N., Chung, M., Williams, Ok., Gala, M. L. & Manthiram, Ok. Non-aqueous fuel diffusion electrodes for fast ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Suryanto, B. H. R. et al. Challenges and prospects within the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, M. et al. Over 56.55% Faradaic effectivity of ambient ammonia synthesis enabled by positively shifting the response potential. Nat. Commun. 10, 341 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, G. F. et al. Electrochemical discount of nitrate to ammonia by way of direct eight-electron switch utilizing a copper–molecular strong catalyst. Nat. Power 5, 605–613 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z. Y. et al. Electrochemical ammonia synthesis by way of nitrate discount on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H. et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 7, 1708–1754 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lazouski, N., Schiffer, Z. J., Williams, Ok. & Manthiram, Ok. Understanding steady lithium-mediated electrochemical nitrogen discount. Joule 3, 1127–1139 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Suryanto, B. H. R. et al. Nitrogen discount to ammonia at excessive effectivity and charges primarily based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Du, H. L. et al. Electroreduction of nitrogen with virtually 100% current-to-ammonia effectivity. Nature 609, 722–727 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Ok. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S. et al. Electrosynthesis of ammonia with excessive selectivity and excessive charges by way of engineering of the strong–electrolyte interphase. Joule 6, 2083–2101 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Murakami, T., Nohira, T., Goto, T., Ogata, Y. H. & Ito, Y. Electrolytic ammonia synthesis from water and nitrogen fuel in molten salt beneath atmospheric strain. Electrochim. Acta 50, 5423–5426 (2005).

    Article 
    CAS 

    Google Scholar
     

  • McPherson, I. J. et al. The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics. Angew. Chem. Int. Ed. 58, 17433–17441 (2019).

    Article 
    CAS 

    Google Scholar
     

  • McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O utilizing a lithium biking electrification technique at atmospheric strain. Power Environ. Sci. 10, 1621–1630 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Wu, S., Salmon, N., Li, M. M. J., Bañares-Alcántara, R. & Tsang, S. C. E. Power decarbonization by way of inexperienced H2 or NH3? ACS Power Lett. 7, 1021–1033 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Biswas, S. S., Saha, A. & Eswaramoorthy, M. Info or artifacts: pitfalls in quantifying sub-ppm ranges of ammonia produced from electrochemical nitrogen discount. ACS Omega 7, 1874–1882 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Q., Jiao, H., Xiong, L. & Tang, J. Progress and challenges in photocatalytic ammonia synthesis. Mater. Adv. 2, 564–581 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, G. S vacancies act as a bridge to advertise electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis. Chem. Eng. J. 433, 133670 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Han, Q. et al. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for environment friendly photocatalytic ammonia synthesis. Adv. Mater. 33, 2008180 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yin, H. et al. Twin lively facilities bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis. Angew. Chem. Int. Ed. 61, e202114242 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, G. et al. Boosting photocatalytic nitrogen discount to ammonia by twin faulty -C≡N and Ok-doping websites on graphitic carbon nitride nanorod arrays. Appl. Catal. B Environ. 317, 121752 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Kim, S., Park, Y., Kim, J., Pabst, T. P. & Chirik, P. J. Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. Nat. Synth. 1, 297–303 (2022).

    Article 

    Google Scholar
     

  • Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel primarily based Haber–Bosch processes? Power Environ. Sci. 14, 2535–2548 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. & Abild-Pedersen, F. Attaining industrial ammonia synthesis charges at near-ambient situations via modified scaling relations on a confined twin web site. Proc. Natl Acad. Sci. USA 118, 2106527118 (2021).

    Article 

    Google Scholar
     

  • Soloveichik, G. Electrochemical synthesis of ammonia as a possible different to the Haber–Bosch course of. Nat. Catal. 2, 377–380 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G. & Millet, P. Present standing, analysis traits, and challenges in water electrolysis science and know-how. Int. J. Hydrog. Power 45, 26036–26058 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Morlanés, N. et al. A technological roadmap to the ammonia vitality financial system: present state and lacking applied sciences. Chem. Eng. J. 408, 127310 (2021).

    Article 

    Google Scholar
     

  • MacFarlane, D. R. et al. A roadmap to the ammonia financial system. Joule 4, 1186–1205 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ye, L., Nayak-Luke, R., Bañares-Alcántara, R. & Tsang, E. Response: ‘inexperienced’ ammonia manufacturing. Chem 3, 712–714 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Hansen, J. B., Han, P. Inexperienced Ammonia by Haldor Topsoe (Division of Power, 2021); https://www.vitality.gov/websites/default/recordsdata/2021-08/4-green-ammonia-haldor-topsoe.pdf

  • Hansen, J. B. Excessive Environment friendly Ammonia Synthesis Techniques (Ammonia Power Affiliation, 2019); https://www.ammoniaenergy.org/wp-content/uploads/2021/06/1.1-John-Hansen-NH3-Occasion-Melbourne-Topsoe-2019.pdf

  • Small-Scale Inexperienced Ammonia Vegetation Open up New Storage Potentialities for Wind and Photo voltaic Energy (ThyssenKrupp Industrial Options, 2022); https://insights.thyssenkrupp-industrial-solutions.com/story/small-scale-green-ammonia-plants-open-up-new-storage-possibilities-for-wind-and-solar-power/

  • Yara Selects Linde Engineering to Construct Electrolysis Plant at Porsgrunn (Ammonia Power Affiliation, 2022); https://www.ammoniaenergy.org/articles/yara-selects-linde-engineering-to-build-electrolysis-plant-at-porsgrunn/

  • Renewable Ammonia in Vietnam (Ammonia Power Affiliation, 2022); https://www.ammoniaenergy.org/articles/renewable-ammonia-in-vietnam/

  • ABS Publishes Offshore Manufacturing of Inexperienced Hydrogen (American Bureau of Transport, 2022); https://absinfo.eagle.org/acton/media/16130/offshore-production-of-green-hydrogen

  • The P2XFloaterTM (H2CARRIER, 2022); https://www.h2carrier.com/the-p2x-floater

  • Gerretsen, I. The floating photo voltaic panels that monitor the Solar. BBC Future (18 November 2022); https://www.bbc.com/future/article/20221116-the-floating-solar-panels-that-track-the-sun

  • Hong, J., Prawer, S. & Murphy, A. B. Plasma catalysis instead route for ammonia manufacturing: standing, mechanisms, and prospects for progress. ACS Maintain. Chem. Eng. 6, 15–31 (2017).

    Article 

    Google Scholar
     

  • Engelmann, Y. et al. Plasma catalysis for ammonia synthesis: a microkinetic modeling research on the contributions of Eley–Rideal reactions. ACS Maintain. Chem. Eng. 9, 13151–13163 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lee, Ok. et al. Techno-economic performances and life cycle greenhouse fuel emissions of varied ammonia manufacturing pathways together with standard, carbon-capturing, nuclear-powered, and renewable manufacturing. Inexperienced Chem. 24, 4830–4844 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mills, A. et al. Qatar to construct world’s largest ‘blue’ ammonia plant—QatarEnergy. Reuters (1 September 2022); https://www.reuters.com/enterprise/vitality/qatar-build-worlds-largest-blue-ammonia-plant-qatarenergy-ceo-2022-08-31/

  • Frohlke, U. Topsoe and First Ammonia launch zero emission ammonia manufacturing with the world’s largest reservation of electrolyzer capability. Topsoe (14 September 2022);

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles