Bell, T. E. & Torrente-Murciano, L. H2 manufacturing by way of ammonia decomposition utilizing non-noble metallic catalysts: a evaluation. Prime. Catal. 59, 1438–1457 (2016).
Kojima, Y. Hydrogen storage supplies for hydrogen and vitality carriers. Int. J. Hydrog. Power 44, 18179–18192 (2019).
Smith, C., Hill, A. Ok. & Torrente-Murciano, L.Present and future function of Haber–Bosch ammonia in a carbon-free vitality panorama. Power Environ. Sci. 13, 331–344 (2020).
Ravi, M. & Makepeace, J. W.Facilitating inexperienced ammonia manufacture beneath milder situations: what do heterogeneous catalyst formulations have to supply. Chem. Sci. 13, 890–908 (2022).
Bañares-Alcántara, R. et al. Evaluation of Islanded Ammonia-based Power Storage Techniques (Univ. Oxford, 2015).
Wang, Q., Guo, J. & Chen, P. Current progress in direction of mild-condition ammonia synthesis. J. Power Chem. 36, 25–36 (2019).
Ghavam, S., Vahdati, M., Wilson, I. A. G. & Styring, P. Sustainable ammonia manufacturing processes. Entrance. Power Res. 9, 580808 (2021).
Bellenger, R., Darnajoux, X., Zhang, A. M. L. & Kraepiel, J. P. Organic nitrogen fixation by different nitrogenases in terrestrial ecosystems: a evaluation. Biogeochemistry 149, 53–73 (2020).
Hywind Scotland (Equinor, 2022); https://www.equinor.com/vitality/hywind-scotland
Offshore Options (Siemens Power World, 2022); https://www.siemens-energy.com/world/en/choices/industrial-applications/oil-gas/offshore-solutions.html
Foster, S. L. et al. Catalysts for nitrogen discount to ammonia. Nat. Catal. 1, 490–500 (2018).
Walter, M. D. Ammonia formation revisited. Nat. Chem. 14, 12–13 (2021).
Mortensen, J. J., Hansen, L. B., Hammer, B. & Nørskov, J. Ok. et al. Nitrogen adsorption and dissociation on Fe(111). J. Catal. 182, 479–488 (1999).
Ertl, G. Reactions at surfaces: from atoms to complexity. Angew. Chem. Int. Ed. 47, 3524–3535 (2007).
Qian, J., An, Q., Fortunelli, A., Nielsen, R. J. & Goddard, W. A. Response mechanism and kinetics for ammonia synthesis on the Fe(111) floor. J. Am. Chem. Soc. 140, 6288–6297 (2018).
Lin, R. J., Li, F. Y. & Chen, H. L. Computational investigation on adsorption and dissociation of the NH3 molecule on the Fe(111) floor. J. Phys. Chem. C 115, 521–528 (2011).
Egeberg, R. C. et al. N2 dissociation on Fe(110) and Fe/Ru(0001): what’s the function of steps? Surf. Sci. 491, 183–194 (2001).
Medford, A. J. et al. From the Sabatier precept to a predictive concept of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).
Rod, T. H., Logadottir, A. & Nørskov, J. Ok. Ammonia synthesis at low temperatures. J. Chem. Phys. 112, 5343–5347 (2000).
Humphreys, J., Lan, R. & Tao, S. Growth and up to date progress on ammonia synthesis catalysts for Haber–Bosch course of. Adv. Power Maintain. Res. 2, 2000043 (2021).
Jacobsen, C. J. H. et al. Catalyst design by interpolation within the periodic desk: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).
Fang, H. et al. Challenges and alternatives of Ru-based catalysts towards the synthesis and utilization of ammonia. ACS Catal. 12, 3938–3954 (2022).
Arnaiz del Pozo, C. & Cloete, S. Techno-economic evaluation of blue and inexperienced ammonia as vitality carriers in a low-carbon future. Power Convers. Manag. 255, 115312 (2022).
Sato, Ok. & Nagaoka, Ok. Boosting ammonia synthesis beneath gentle response situations by exact management of the fundamental oxide–Ru interface. Chem. Lett. 50, 687–696 (2021).
Sato, Ok. et al. Floor dynamics for creating extremely lively Ru websites for ammonia synthesis: accumulation of a low-crystalline, oxygen-deficient nanofraction. ACS Maintain. Chem. Eng. 8, 2726–2734 (2020).
Lin, B. et al. Morphology impact of ceria on the catalytic performances of Ru/CeO2 catalysts for ammonia synthesis. Ind. Eng. Chem. Res. 57, 9127–9135 (2018).
Marakatti, V. S. & Gaigneaux, E. M. Current advances in heterogeneous catalysis for ammonia synthesis. ChemCatChem 12, 5838–5857 (2020).
Feng, J. et al. Sub-nanometer Ru clusters on ceria nanorods as environment friendly catalysts for ammonia synthesis beneath gentle situations. ACS Maintain. Chem. Eng. 10, 10181–10191 (2022).
Wu, S. et al. Removing of hydrogen poisoning by electrostatically polar MgO help for low-pressure NH3 synthesis at a excessive price over the Ru catalyst. ACS Catal. 10, 5614–5622 (2020).
Wu, S. et al. Speedy interchangeable hydrogen, hydride, and proton species on the interface of transition metallic atom on oxide floor. J. Am. Chem. Soc. 143, 9105–9112 (2021).
Kitano, M. et al. Ammonia synthesis utilizing a steady electride as an electron donor and reversible hydrogen retailer. Nat. Chem. 4, 934–940 (2012).
Kitano, M. et al. Electride help boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).
Kammert, J. et al. Nature of reactive hydrogen for ammonia synthesis over a Ru/C12A7 electride catalyst. J. Am. Chem. Soc. 142, 7655–7667 (2020).
Wu, J. et al. Intermetallic electride catalyst as a platform for ammonia synthesis. Angew. Chem. Int. Ed. 58, 825–829 (2019).
Gong, Y. et al.LaRuSi electride disrupts the scaling relations for ammonia synthesis. Chem. Mater. 34, 1677–1685 (2022).
Zhang, X. et al. Synergizing floor hydride species and Ru clusters on Sm2O3 for environment friendly ammonia synthesis. ACS Catal. 12, 2178–2190 (2022).
García-García, F. R., Guerrero-Ruiz, A. & Rodríguez-Ramos, I. Position of B5-type websites in Ru catalysts used for the NH3 decomposition response. Prime. Catal. 52, 758–764 (2009).
Shetty, S., Jansen, A. P. J. & Van Santen, R. A. Lively websites for N2 dissociation on ruthenium. J. Phys. Chem. C 112, 17768–17771 (2008).
Wang, L., Chen, J., Ge, L., Rudolph, V. & Zhu, Z. Distinction within the cooperative interplay between carbon nanotubes and Ru particles loaded on their inside/exterior floor. RSC Adv. 3, 12641–12647 (2013).
Li, L. et al. Measurement sensitivity of supported Ru catalysts for ammonia synthesis: from nanoparticles to subnanometric clusters and atomic clusters. Chem 8, 749–768 (2022).
Zhou, Y. et al. Unraveling the size-dependent impact of Ru-based catalysts on ammonia synthesis at gentle situations. J. Catal. 404, 501–511 (2021).
Zeinalipour-Yazdi, C. D., Richard, C., Catlow, A., Hargreaves, J. S. J. & Laassiri, S. A comparative evaluation of the mechanisms of ammonia synthesis on varied catalysts utilizing density purposeful concept. R. Soc. Open Sci. 8, 210952 (2021).
Kojima, R. & Aika, Ok. I. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Chem Lett. 29, 514–515 (2003).
Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Richard, C. & Catlow, A. Low-T mechanisms of ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 122, 6078–6082 (2018).
Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J., Laassiri, S., Richard, C. & Catlow, A. The mixing of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metallic nitrides. Phys. Chem. Chem. Phys. 20, 21803–21808 (2018).
Ye, T.-N. et al. Emptiness-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).
Ye, T.-N. et al. Contribution of nitrogen vacancies to ammonia synthesis over metallic nitride catalysts. J. Am. Chem. Soc. 142, 14374–14383 (2020).
Wang, Q. et al. Ternary ruthenium complicated hydrides for ammonia synthesis by way of the associative mechanism. Nat. Catal. 4, 959–967 (2021).
Hattori, M., Iijima, S., Nakao, T., Hosono, H. & Hara, M. Stable resolution for catalytic ammonia synthesis from nitrogen and hydrogen gases at 50 °C. Nat. Commun. 11, 2001 (2020).
Liu, J.-C. et al. Heterogeneous Fe3 single-cluster catalyst for ammonia synthesis by way of an associative mechanism. Nat. Commun. 9, 1610 (2018).
Zheng, J. et al. Environment friendly non-dissociative activation of dinitrogen to ammonia over lithium-promoted ruthenium nanoparticles at low strain. Angew. Chem. Int. Ed. 58, 17335–17341 (2019).
Wang, X. et al. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia by way of an associative mechanism. ACS Catal. 10, 9504–9514 (2020).
Ye, T.-N. et al. Dissociative and associative concerted mechanism for ammonia synthesis over Co-based catalyst. J. Am. Chem. Soc. 143, 12857–12866 (2021).
Zhou, Y. et al. Integrating dissociative and associative routes for environment friendly ammonia synthesis over a TiCN-promoted Ru-based catalyst. ACS Catal. 12, 2651–2660 (2022).
Lai, Q. et al. Chemical looping primarily based ammonia manufacturing—a promising pathway for manufacturing of the noncarbon gasoline. Sci. Bull. 67, 2124–2138 (2022).
Gao, W. et al. Manufacturing of ammonia by way of a chemical looping course of primarily based on metallic imides as nitrogen carriers. Nat. Power 3, 1067–1075 (2018).
Yan, H. et al. Lithium palladium hydride promotes chemical looping ammonia synthesis mediated by lithium imide and hydride. J. Phys. Chem. C 125, 6716–6722 (2021).
Yang, S. et al. Molybdenum-based nitrogen service for ammonia manufacturing by way of a chemical looping route. Appl. Catal. B Environ. 312, 121404 (2022).
Tagawa, Ok., Gi, H., Shinzato, Ok., Miyaoka, H. & Ichikawa, T. Enchancment of kinetics of ammonia synthesis at ambient strain by the chemical looping strategy of lithium hydride. J. Phys. Chem. C 126, 2403–2409 (2022).
Xiong, C. et al. Excessive thermal stability Si–Al primarily based N-carrier for environment friendly and steady chemical looping ammonia era. Appl. Power 323, 119519 (2022).
Pereira, R. J. L., Hu, W. & Metcalfe, I. S. Impression of fuel–strong response thermodynamics on the efficiency of a chemical looping ammonia synthesis course of. Power Fuels 36, 9757–9767 (2022).
Jain, M., Muthalathu, R. & Wu, X. Y. Electrified ammonia manufacturing as a commodity and vitality storage medium to attach the meals, vitality, and commerce sectors. iScience 25, 104724 (2022).
Lazouski, N., Chung, M., Williams, Ok., Gala, M. L. & Manthiram, Ok. Non-aqueous fuel diffusion electrodes for fast ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).
Suryanto, B. H. R. et al. Challenges and prospects within the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).
Wang, M. et al. Over 56.55% Faradaic effectivity of ambient ammonia synthesis enabled by positively shifting the response potential. Nat. Commun. 10, 341 (2019).
Chen, G. F. et al. Electrochemical discount of nitrate to ammonia by way of direct eight-electron switch utilizing a copper–molecular strong catalyst. Nat. Power 5, 605–613 (2020).
Wu, Z. Y. et al. Electrochemical ammonia synthesis by way of nitrate discount on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).
Shen, H. et al. Electrochemical ammonia synthesis: mechanistic understanding and catalyst design. Chem 7, 1708–1754 (2021).
Lazouski, N., Schiffer, Z. J., Williams, Ok. & Manthiram, Ok. Understanding steady lithium-mediated electrochemical nitrogen discount. Joule 3, 1127–1139 (2019).
Suryanto, B. H. R. et al. Nitrogen discount to ammonia at excessive effectivity and charges primarily based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).
Du, H. L. et al. Electroreduction of nitrogen with virtually 100% current-to-ammonia effectivity. Nature 609, 722–727 (2022).
Li, Ok. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).
Li, S. et al. Electrosynthesis of ammonia with excessive selectivity and excessive charges by way of engineering of the strong–electrolyte interphase. Joule 6, 2083–2101 (2022).
Murakami, T., Nohira, T., Goto, T., Ogata, Y. H. & Ito, Y. Electrolytic ammonia synthesis from water and nitrogen fuel in molten salt beneath atmospheric strain. Electrochim. Acta 50, 5423–5426 (2005).
McPherson, I. J. et al. The feasibility of electrochemical ammonia synthesis in molten LiCl–KCl eutectics. Angew. Chem. Int. Ed. 58, 17433–17441 (2019).
McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O utilizing a lithium biking electrification technique at atmospheric strain. Power Environ. Sci. 10, 1621–1630 (2017).
Wu, S., Salmon, N., Li, M. M. J., Bañares-Alcántara, R. & Tsang, S. C. E. Power decarbonization by way of inexperienced H2 or NH3? ACS Power Lett. 7, 1021–1033 (2022).
Biswas, S. S., Saha, A. & Eswaramoorthy, M. Info or artifacts: pitfalls in quantifying sub-ppm ranges of ammonia produced from electrochemical nitrogen discount. ACS Omega 7, 1874–1882 (2022).
Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).
Han, Q., Jiao, H., Xiong, L. & Tang, J. Progress and challenges in photocatalytic ammonia synthesis. Mater. Adv. 2, 564–581 (2021).
Zhang, G. S vacancies act as a bridge to advertise electron injection from Z-scheme heterojunction to nitrogen molecule for photocatalytic ammonia synthesis. Chem. Eng. J. 433, 133670 (2022).
Han, Q. et al. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for environment friendly photocatalytic ammonia synthesis. Adv. Mater. 33, 2008180 (2021).
Yin, H. et al. Twin lively facilities bridged by oxygen vacancies of ruthenium single-atom hybrids supported on molybdenum oxide for photocatalytic ammonia synthesis. Angew. Chem. Int. Ed. 61, e202114242 (2022).
Liu, G. et al. Boosting photocatalytic nitrogen discount to ammonia by twin faulty -C≡N and Ok-doping websites on graphitic carbon nitride nanorod arrays. Appl. Catal. B Environ. 317, 121752 (2022).
Kim, S., Park, Y., Kim, J., Pabst, T. P. & Chirik, P. J. Ammonia synthesis by photocatalytic hydrogenation of a N2-derived molybdenum nitride. Nat. Synth. 1, 297–303 (2022).
Wang, M. et al. Can sustainable ammonia synthesis pathways compete with fossil-fuel primarily based Haber–Bosch processes? Power Environ. Sci. 14, 2535–2548 (2021).
Wang, T. & Abild-Pedersen, F. Attaining industrial ammonia synthesis charges at near-ambient situations via modified scaling relations on a confined twin web site. Proc. Natl Acad. Sci. USA 118, 2106527118 (2021).
Soloveichik, G. Electrochemical synthesis of ammonia as a possible different to the Haber–Bosch course of. Nat. Catal. 2, 377–380 (2019).
Grigoriev, S. A., Fateev, V. N., Bessarabov, D. G. & Millet, P. Present standing, analysis traits, and challenges in water electrolysis science and know-how. Int. J. Hydrog. Power 45, 26036–26058 (2020).
Morlanés, N. et al. A technological roadmap to the ammonia vitality financial system: present state and lacking applied sciences. Chem. Eng. J. 408, 127310 (2021).
MacFarlane, D. R. et al. A roadmap to the ammonia financial system. Joule 4, 1186–1205 (2020).
Ye, L., Nayak-Luke, R., Bañares-Alcántara, R. & Tsang, E. Response: ‘inexperienced’ ammonia manufacturing. Chem 3, 712–714 (2017).
Hansen, J. B., Han, P. Inexperienced Ammonia by Haldor Topsoe (Division of Power, 2021); https://www.vitality.gov/websites/default/recordsdata/2021-08/4-green-ammonia-haldor-topsoe.pdf
Hansen, J. B. Excessive Environment friendly Ammonia Synthesis Techniques (Ammonia Power Affiliation, 2019); https://www.ammoniaenergy.org/wp-content/uploads/2021/06/1.1-John-Hansen-NH3-Occasion-Melbourne-Topsoe-2019.pdf
Small-Scale Inexperienced Ammonia Vegetation Open up New Storage Potentialities for Wind and Photo voltaic Energy (ThyssenKrupp Industrial Options, 2022); https://insights.thyssenkrupp-industrial-solutions.com/story/small-scale-green-ammonia-plants-open-up-new-storage-possibilities-for-wind-and-solar-power/
Yara Selects Linde Engineering to Construct Electrolysis Plant at Porsgrunn (Ammonia Power Affiliation, 2022); https://www.ammoniaenergy.org/articles/yara-selects-linde-engineering-to-build-electrolysis-plant-at-porsgrunn/
Renewable Ammonia in Vietnam (Ammonia Power Affiliation, 2022); https://www.ammoniaenergy.org/articles/renewable-ammonia-in-vietnam/
ABS Publishes Offshore Manufacturing of Inexperienced Hydrogen (American Bureau of Transport, 2022); https://absinfo.eagle.org/acton/media/16130/offshore-production-of-green-hydrogen
The P2XFloaterTM (H2CARRIER, 2022); https://www.h2carrier.com/the-p2x-floater
Gerretsen, I. The floating photo voltaic panels that monitor the Solar. BBC Future (18 November 2022); https://www.bbc.com/future/article/20221116-the-floating-solar-panels-that-track-the-sun
Hong, J., Prawer, S. & Murphy, A. B. Plasma catalysis instead route for ammonia manufacturing: standing, mechanisms, and prospects for progress. ACS Maintain. Chem. Eng. 6, 15–31 (2017).
Engelmann, Y. et al. Plasma catalysis for ammonia synthesis: a microkinetic modeling research on the contributions of Eley–Rideal reactions. ACS Maintain. Chem. Eng. 9, 13151–13163 (2021).
Lee, Ok. et al. Techno-economic performances and life cycle greenhouse fuel emissions of varied ammonia manufacturing pathways together with standard, carbon-capturing, nuclear-powered, and renewable manufacturing. Inexperienced Chem. 24, 4830–4844 (2022).
Mills, A. et al. Qatar to construct world’s largest ‘blue’ ammonia plant—QatarEnergy. Reuters (1 September 2022); https://www.reuters.com/enterprise/vitality/qatar-build-worlds-largest-blue-ammonia-plant-qatarenergy-ceo-2022-08-31/
Frohlke, U. Topsoe and First Ammonia launch zero emission ammonia manufacturing with the world’s largest reservation of electrolyzer capability. Topsoe (14 September 2022);