google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
19.1 C
New York
Sunday, May 28, 2023

Quick analysis of the adsorption power of natural molecules on metals through graph neural networks


  • Nørskov, J. Okay., Bligaard, T., Rossmeisl, J. & Christensen, C. H. In the direction of the computational design of strong catalysts. Nat. Chem. 1, 37–46 (2009).

    Article 

    Google Scholar
     

  • Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing lively machine studying. Nature 581, 178–183 (2020).

    Article 

    Google Scholar
     

  • Ma, X., Li, Z., Achenie, L. E. Okay. & Xin, H. Machine-learning-augmented chemisorption mannequin for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).

    Article 

    Google Scholar
     

  • Cohen, N. & Benson, S. W. Estimation of heats of formation of natural compounds by additivity strategies. Chem. Rev. 93, 2419–2438 (1993).

    Article 

    Google Scholar
     

  • Eigenmann, H. Okay., Golden, D. M. & Benson, S. W. Revised group additivity parameters for the enthalpies of formation of oxygen-containing natural compounds. J. Phys. Chem. 77, 1687–1691 (1973).

    Article 

    Google Scholar
     

  • Benson, S. W. & Buss, J. H. Additivity guidelines for the estimation of molecular properties. thermodynamic properties. J. Chem. Phys. 29, 546–572 (1958).

    Article 

    Google Scholar
     

  • Benson, S. W. III–Bond energies. J. Chem. Educ. 42, 502 (1965).

    Article 

    Google Scholar
     

  • Benson, S. W. et al. Additivity guidelines for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969).

    Article 

    Google Scholar
     

  • Sabbe, M. Okay. et al. Group additive values for the fuel section customary enthalpy of formation of hydrocarbons and hydrocarbon radicals. J. Phys. Chem. A 109, 7466–7480 (2005).

    Article 

    Google Scholar
     

  • Shustorovich, E. The bond-order conservation strategy to chemisorption and heterogeneous catalysis: purposes and implications. Adv. Catal. 37, 101–163 (1990).


    Google Scholar
     

  • García-Muelas, R. & López, N. Collective descriptors for the adsorption of sugar alcohols on Pt and Pd(111). J. Phys. Chem. C 118, 17531–17537 (2014).

    Article 

    Google Scholar
     

  • García-Muelas, R. & López, N. Statistical studying goes past the d-band mannequin offering the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).

    Article 

    Google Scholar
     

  • Salciccioli, M., Chen, Y. & Vlachos, D. G. Density purposeful theory-derived group additivity and linear scaling strategies for prediction of oxygenate stability on metallic catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J. Phys. Chem. C 114, 20155–20166 (2010).

    Article 

    Google Scholar
     

  • Wittreich, G. R. & Vlachos, D. G. Python group additivity (pGrAdd) software program for estimating species thermochemical properties. Comput. Phys. Commun. 273, 108277 (2022).

    Article 

    Google Scholar
     

  • Gu, G. H. et al. Group additivity for aqueous section thermochemical properties of alcohols on Pt(111). J. Phys. Chem. C 121, 21510–21519 (2017).

    Article 

    Google Scholar
     

  • Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Idea-guided machine studying finds geometric construction–property relationships for chemisorption on subsurface alloys. Chem 6, 3100–3117 (2020).

    Article 

    Google Scholar
     

  • Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine studying for information era in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).

    Article 

    Google Scholar
     

  • Andersen, M. & Reuter, Okay. Adsorption enthalpies for catalysis modeling by machine-learned descriptors. Acc. Chem. Res. 54, 2741–2749 (2021).

    Article 

    Google Scholar
     

  • Gu, G. H., Lee, M., Jung, Y. & Vlachos, D. G. Automated exploitation of the large configuration house of huge adsorbates on transition metals reveals chemistry feasibility. Nat. Commun. 13, 2087 (2022).

    Article 

    Google Scholar
     

  • Gu, G. H. et al. Sensible deep-learning illustration for quick heterogeneous catalyst screening. J. Phys. Chem. Lett. 11, 3185–3191 (2020).

    Article 

    Google Scholar
     

  • Again, S. et al. Convolutional neural community of atomic floor constructions to foretell binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).

    Article 

    Google Scholar
     

  • Omidvar, N. et al. Interpretable machine studying of chemical bonding at strong surfaces. J. Phys. Chem. Lett. 12, 11476–11487 (2021).

    Article 

    Google Scholar
     

  • Sanchez-Lengeling, B., Reif, E., Pearce, A & Wiltschko, A. B. A mild introduction to graph neural networks. Distill https://doi.org/10.23915/distill.00033 (2021).

  • Mercado, R. et al. Graph networks for molecular design. Mach. Study. Sci. Technol. 2, 025023 (2021).

    Article 

    Google Scholar
     

  • Zhou, J. et al. Graph neural networks: a overview of strategies and purposes. AI Open 1, 57–81 (2020).

    Article 

    Google Scholar
     

  • Duvenaud, D. Okay. et al. Convolutional networks on graphs for studying molecular fingerprints. In Advances in Neural Data Processing Techniques Vol. 28 (eds Cortes, C. et al.) (Curran Associates, 2015).

  • Reiser, P. et al. Graph neural networks for supplies science and chemistry. Commun. Mater. 3, 93 (2022).

    Article 

    Google Scholar
     

  • Schütt, Okay. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Müller, Okay. R. SchNet—a deep studying structure for molecules and supplies. J. Chem. Phys. 148, 241722 (2018).

    Article 

    Google Scholar
     

  • Gilmer, J., Schoenholz. S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. thirty fourth Worldwide Convention on Machine Studying: Proc. Machine Studying Analysis Vol. 70 (eds Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).

  • Zhang, D., Xia, S. & Zhang, Y. Correct prediction of aqueous free solvation energies utilizing 3D atomic feature-based graph neural community with switch studying. J. Chem. Inf. Mannequin. 62, 1840–1848 (2022).

    Article 

    Google Scholar
     

  • Schütt, Okay., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. thirty eighth Worldwide Convention on Machine Studying: Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021).

  • Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an correct and interpretable prediction of fabric properties. Phys. Rev. Lett. 120, 145301 (2018).

    Article 

    Google Scholar
     

  • Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a common machine studying framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).

    Article 

    Google Scholar
     

  • Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and neighborhood challenges. ACS Catal. 11, 6059–6072 (2021).

    Article 

    Google Scholar
     

  • Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysis. ACS Catal. 13, 3066–3084 (2023).

    Article 

    Google Scholar
     

  • Gasteiger, J., Gross, J. & Günnemann, S. Directional message passing for molecular graphs. Preprint at https://arxiv.org/abs/2003.03123 (2020).

  • Kolluru, A. et al. Switch studying utilizing attentions throughout atomic programs with graph neural networks (TAAG). J. Chem. Phys. 156, 184702 (2022).

    Article 

    Google Scholar
     

  • Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-based machine studying framework for heterogeneous catalysis. Nat. Commun. 13, 5788 (2022).

    Article 

    Google Scholar
     

  • Xu, W., Reuter, Okay. & Andersen, M. Predicting binding motifs of complicated adsorbates utilizing machine studying with a physics-inspired graph illustration. Nat. Comput. Sci. 2, 443–450 (2022).

    Article 

    Google Scholar
     

  • Gu, G. H., Plechac, P. & Vlachos, D. G. Thermochemistry of gas-phase and floor species through LASSO-assisted subgraph choice. React. Chem. Eng. 3, 454–466 (2018).

    Article 

    Google Scholar
     

  • Gasteiger, J., Becker, F. & Günnemann, S. GemNet: common directional graph neural networks for molecules. In Advances in Neural Data Processing Techniques Vol. 34 (eds Ranzato, M.) 6790–6802 (Curran Associates, 2021).

  • Sanchez-Lengeling, B. et al. Machine studying for scent: studying generalizable perceptual representations of small molecules. Preprint at https://arxiv.org/abs/1910.10685 (2019).

  • Flam-Shepherd, D., Wu, T. C., Friederich, P. & Aspuru-Guzik, A. Neural message passing on excessive order paths. Mach. Study. Sci. Technol. 2, 045009 (2021).

    Article 

    Google Scholar
     

  • Morandi, S., Pablo-García, S. & Ivković, Ž. Title. FG-dataset. ioChem-BD https://doi.org/10.19061/iochem-bd-1-257 (2023).

  • Álvarez-Moreno, M. et al. Managing the computational chemistry huge information drawback: the ioChem-BD platform. J. Chem. Inf. Mannequin. 55, 95–103 (2014).

    Article 

    Google Scholar
     

  • Isayev, O. et al. Common fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).

    Article 

    Google Scholar
     

  • Cordero, B. et al. Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008).

    Article 

    Google Scholar
     

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Huge information meets quantum chemistry approximations: the Δ-machine studying strategy. J. Chem. Idea Comput. 11, 2087–2096 (2015).

    Article 

    Google Scholar
     

  • Hamilton, W., Ying, Z. & Leskovec, J. Inductive illustration studying on giant graphs. In Advances in Neural Data Processing Techniques Vol. 30 (eds Guyon, I. et al.) (Curran Associates, 2017).

  • Baek, J., Kang, M. & Hwang, S. J. Correct studying of graph representations with graph multiset pooling. Preprint at https://arxiv.org/abs/2102.11533 (2021).

  • Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metallic surfaces and comparability to chose DFT functionals. Surf. Sci. 640, 36–44 (2015).

    Article 

    Google Scholar
     

  • Woller, T. et al. Efficiency of digital construction strategies for the outline of Hückel–Möbius interconversions in prolonged π-systems. J. Phys. Chem. A 124, 2380–2397 (2020).

    Article 

    Google Scholar
     

  • Sylvetsky, N., Banerjee, A., Alonso, M. & Martin, J. M. L. Efficiency of localized coupled cluster strategies in a reasonably robust correlation regime: Hückel–Möbius interconversions in expanded porphyrins. J. Chem. Idea Comput. 16, 3641–3653 (2020).

    Article 

    Google Scholar
     

  • Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations via coordination numbers. Nat. Chem. 7, 403–410 (2015).

    Article 

    Google Scholar
     

  • Li, Q. & López, N. Chirality, rigidity, and conjugation: a first-principles research of the important thing molecular elements of lignin depolymerization on Ni-based catalysts. ACS Catal. 8, 4230–4240 (2018).

    Article 

    Google Scholar
     

  • Puértolas, B. et al. Mechanistic insights into the ceria-catalyzed synthesis of carbamates as polyurethane precursors. ACS Catal. 9, 7708–7720 (2019).

    Article 

    Google Scholar
     

  • Ding, S., Hülsey, M. J., Pérez-Ramírez, J. & Yan, N. Remodeling power with single-atom catalysts. Joule 3, 2897–2929 (2019).

    Article 

    Google Scholar
     

  • Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, Okay. Past scaling relations for the outline of catalytic supplies. ACS Catal. 9, 2752–2759 (2019).

    Article 

    Google Scholar
     

  • Pablo-García, S. et al. Mechanistic routes towards C3 merchandise in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).

    Article 

    Google Scholar
     

  • Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    Article 

    Google Scholar
     

  • Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article 

    Google Scholar
     

  • Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article 

    Google Scholar
     

  • Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density purposeful idea. J. Comput. Chem. 32, 1456–1465 (2011).

    Article 

    Google Scholar
     

  • Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless derivation of dispersion coefficients for metallic surfaces. J. Chem. Idea Comput. 10, 5002–5009 (2014).

    Article 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 

    Google Scholar
     

  • Neugebauer, J. & Scheffler, M. Adsorbate–substrate and adsorbate–adsorbate interactions of Na and Okay adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).

    Article 

    Google Scholar
     

  • Monkhorst, H. J. & Pack, J. D. Particular factors for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article 
    MathSciNet 

    Google Scholar
     

  • Steinmann, S. N., Hermawan, A., Jassar, M. B. & Seh, Z. W. Autonomous high-throughput computations in catalysis. Chem Catal. 2, 940–956 (2022).

    Article 

    Google Scholar
     

  • Weininger, D. SMILES, a chemical language and knowledge system. 1. Introduction to methodology and encoding guidelines. J. Chem. Inf. Mannequin. 28, 31–36 (1988).


    Google Scholar
     

  • Halgren, T. A. Merck molecular drive area. I. Foundation, kind, scope, parameterization, and efficiency of MMFF94. J. Comput. Chem. 17, 490–519 (1996).

    Article 

    Google Scholar
     

  • Ong, S. P. et al. Python Supplies Genomics (pymatgen): a strong, open-source Python library for supplies evaluation. Comput. Mater. Sci. 68, 314–319 (2013).

    Article 

    Google Scholar
     

  • Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Study. Res. 12, 2825–2830 (2011).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Li, L. et al. A system for massively parallel hyperparameter tuning. In Proc. Machine Studying and Techniques Vol. 2 (eds Dhillon, I. et al.) 230–246 (2020).

  • Liaw, R. et al. Tune: a analysis platform for distributed mannequin choice and coaching. Preprint at https://arxiv.org/abs/1807.05118 (2018).

  • Agarap, A. F. Deep studying utilizing rectified linear items (ReLU). Preprint at https://arxiv.org/abs/1803.08375 (2018).

  • Kingma, D. P. & Ba, J. Adam: a way for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).

  • Fey, M. & Lenssen, J. E. Quick graph illustration studying with Pytorch Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).

  • Paszke, A. et al. Pytorch: an crucial type, high-performance deep studying library. In Advances in Neural Data Processing Techniques Vol. 32, 8024–8035 (Curran Associates, 2019).

  • Pablo-García. S. Extra is Totally different: Trendy Computational Modeling for Heterogeneous Catalysis. PhD thesis, Univ. Rovira i Virgili, Tarragona (2022).

  • Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring community construction, dynamics, and performance utilizing NetworkX. In Proc. seventh Python in Science Convention (eds Varoquaux, G. et al.) 11–15 (2008).

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Guide (CreateSpace, 2009).

  • Hunter, J. D. Matplotlib: a 2D graphics atmosphere. Comput. Sci. Eng. 9, 90–95 (2007).

    Article 

    Google Scholar
     

  • Waskom, M. L. seaborn: statistical information visualization. J. Open Supply Softw. 6, 3021 (2021).

    Article 

    Google Scholar
     

  • Pablo-García, S. & Morandi, S. GAME-Web (0.2.0). Zenodo https://doi.org/10.5281/zenodo.7750394 (2023).

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles