Nørskov, J. Okay., Bligaard, T., Rossmeisl, J. & Christensen, C. H. In the direction of the computational design of strong catalysts. Nat. Chem. 1, 37–46 (2009).
Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts utilizing lively machine studying. Nature 581, 178–183 (2020).
Ma, X., Li, Z., Achenie, L. E. Okay. & Xin, H. Machine-learning-augmented chemisorption mannequin for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 3528–3533 (2015).
Cohen, N. & Benson, S. W. Estimation of heats of formation of natural compounds by additivity strategies. Chem. Rev. 93, 2419–2438 (1993).
Eigenmann, H. Okay., Golden, D. M. & Benson, S. W. Revised group additivity parameters for the enthalpies of formation of oxygen-containing natural compounds. J. Phys. Chem. 77, 1687–1691 (1973).
Benson, S. W. & Buss, J. H. Additivity guidelines for the estimation of molecular properties. thermodynamic properties. J. Chem. Phys. 29, 546–572 (1958).
Benson, S. W. III–Bond energies. J. Chem. Educ. 42, 502 (1965).
Benson, S. W. et al. Additivity guidelines for the estimation of thermochemical properties. Chem. Rev. 69, 279–324 (1969).
Sabbe, M. Okay. et al. Group additive values for the fuel section customary enthalpy of formation of hydrocarbons and hydrocarbon radicals. J. Phys. Chem. A 109, 7466–7480 (2005).
Shustorovich, E. The bond-order conservation strategy to chemisorption and heterogeneous catalysis: purposes and implications. Adv. Catal. 37, 101–163 (1990).
García-Muelas, R. & López, N. Collective descriptors for the adsorption of sugar alcohols on Pt and Pd(111). J. Phys. Chem. C 118, 17531–17537 (2014).
García-Muelas, R. & López, N. Statistical studying goes past the d-band mannequin offering the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).
Salciccioli, M., Chen, Y. & Vlachos, D. G. Density purposeful theory-derived group additivity and linear scaling strategies for prediction of oxygenate stability on metallic catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J. Phys. Chem. C 114, 20155–20166 (2010).
Wittreich, G. R. & Vlachos, D. G. Python group additivity (pGrAdd) software program for estimating species thermochemical properties. Comput. Phys. Commun. 273, 108277 (2022).
Gu, G. H. et al. Group additivity for aqueous section thermochemical properties of alcohols on Pt(111). J. Phys. Chem. C 121, 21510–21519 (2017).
Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Idea-guided machine studying finds geometric construction–property relationships for chemisorption on subsurface alloys. Chem 6, 3100–3117 (2020).
Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine studying for information era in heterogeneous catalysis. Nat. Catal. 5, 175–184 (2022).
Andersen, M. & Reuter, Okay. Adsorption enthalpies for catalysis modeling by machine-learned descriptors. Acc. Chem. Res. 54, 2741–2749 (2021).
Gu, G. H., Lee, M., Jung, Y. & Vlachos, D. G. Automated exploitation of the large configuration house of huge adsorbates on transition metals reveals chemistry feasibility. Nat. Commun. 13, 2087 (2022).
Gu, G. H. et al. Sensible deep-learning illustration for quick heterogeneous catalyst screening. J. Phys. Chem. Lett. 11, 3185–3191 (2020).
Again, S. et al. Convolutional neural community of atomic floor constructions to foretell binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 4401–4408 (2019).
Omidvar, N. et al. Interpretable machine studying of chemical bonding at strong surfaces. J. Phys. Chem. Lett. 12, 11476–11487 (2021).
Sanchez-Lengeling, B., Reif, E., Pearce, A & Wiltschko, A. B. A mild introduction to graph neural networks. Distill https://doi.org/10.23915/distill.00033 (2021).
Mercado, R. et al. Graph networks for molecular design. Mach. Study. Sci. Technol. 2, 025023 (2021).
Zhou, J. et al. Graph neural networks: a overview of strategies and purposes. AI Open 1, 57–81 (2020).
Duvenaud, D. Okay. et al. Convolutional networks on graphs for studying molecular fingerprints. In Advances in Neural Data Processing Techniques Vol. 28 (eds Cortes, C. et al.) (Curran Associates, 2015).
Reiser, P. et al. Graph neural networks for supplies science and chemistry. Commun. Mater. 3, 93 (2022).
Schütt, Okay. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Müller, Okay. R. SchNet—a deep studying structure for molecules and supplies. J. Chem. Phys. 148, 241722 (2018).
Gilmer, J., Schoenholz. S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. thirty fourth Worldwide Convention on Machine Studying: Proc. Machine Studying Analysis Vol. 70 (eds Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).
Zhang, D., Xia, S. & Zhang, Y. Correct prediction of aqueous free solvation energies utilizing 3D atomic feature-based graph neural community with switch studying. J. Chem. Inf. Mannequin. 62, 1840–1848 (2022).
Schütt, Okay., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. thirty eighth Worldwide Convention on Machine Studying: Proc. Machine Studying Analysis Vol. 139 (eds Meila, M. & Zhang, T.) 9377–9388 (PMLR, 2021).
Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an correct and interpretable prediction of fabric properties. Phys. Rev. Lett. 120, 145301 (2018).
Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a common machine studying framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019).
Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and neighborhood challenges. ACS Catal. 11, 6059–6072 (2021).
Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysis. ACS Catal. 13, 3066–3084 (2023).
Gasteiger, J., Gross, J. & Günnemann, S. Directional message passing for molecular graphs. Preprint at https://arxiv.org/abs/2003.03123 (2020).
Kolluru, A. et al. Switch studying utilizing attentions throughout atomic programs with graph neural networks (TAAG). J. Chem. Phys. 156, 184702 (2022).
Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-based machine studying framework for heterogeneous catalysis. Nat. Commun. 13, 5788 (2022).
Xu, W., Reuter, Okay. & Andersen, M. Predicting binding motifs of complicated adsorbates utilizing machine studying with a physics-inspired graph illustration. Nat. Comput. Sci. 2, 443–450 (2022).
Gu, G. H., Plechac, P. & Vlachos, D. G. Thermochemistry of gas-phase and floor species through LASSO-assisted subgraph choice. React. Chem. Eng. 3, 454–466 (2018).
Gasteiger, J., Becker, F. & Günnemann, S. GemNet: common directional graph neural networks for molecules. In Advances in Neural Data Processing Techniques Vol. 34 (eds Ranzato, M.) 6790–6802 (Curran Associates, 2021).
Sanchez-Lengeling, B. et al. Machine studying for scent: studying generalizable perceptual representations of small molecules. Preprint at https://arxiv.org/abs/1910.10685 (2019).
Flam-Shepherd, D., Wu, T. C., Friederich, P. & Aspuru-Guzik, A. Neural message passing on excessive order paths. Mach. Study. Sci. Technol. 2, 045009 (2021).
Morandi, S., Pablo-García, S. & Ivković, Ž. Title. FG-dataset. ioChem-BD https://doi.org/10.19061/iochem-bd-1-257 (2023).
Álvarez-Moreno, M. et al. Managing the computational chemistry huge information drawback: the ioChem-BD platform. J. Chem. Inf. Mannequin. 55, 95–103 (2014).
Isayev, O. et al. Common fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).
Cordero, B. et al. Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008).
Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Huge information meets quantum chemistry approximations: the Δ-machine studying strategy. J. Chem. Idea Comput. 11, 2087–2096 (2015).
Hamilton, W., Ying, Z. & Leskovec, J. Inductive illustration studying on giant graphs. In Advances in Neural Data Processing Techniques Vol. 30 (eds Guyon, I. et al.) (Curran Associates, 2017).
Baek, J., Kang, M. & Hwang, S. J. Correct studying of graph representations with graph multiset pooling. Preprint at https://arxiv.org/abs/2102.11533 (2021).
Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metallic surfaces and comparability to chose DFT functionals. Surf. Sci. 640, 36–44 (2015).
Woller, T. et al. Efficiency of digital construction strategies for the outline of Hückel–Möbius interconversions in prolonged π-systems. J. Phys. Chem. A 124, 2380–2397 (2020).
Sylvetsky, N., Banerjee, A., Alonso, M. & Martin, J. M. L. Efficiency of localized coupled cluster strategies in a reasonably robust correlation regime: Hückel–Möbius interconversions in expanded porphyrins. J. Chem. Idea Comput. 16, 3641–3653 (2020).
Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations via coordination numbers. Nat. Chem. 7, 403–410 (2015).
Li, Q. & López, N. Chirality, rigidity, and conjugation: a first-principles research of the important thing molecular elements of lignin depolymerization on Ni-based catalysts. ACS Catal. 8, 4230–4240 (2018).
Puértolas, B. et al. Mechanistic insights into the ceria-catalyzed synthesis of carbamates as polyurethane precursors. ACS Catal. 9, 7708–7720 (2019).
Ding, S., Hülsey, M. J., Pérez-Ramírez, J. & Yan, N. Remodeling power with single-atom catalysts. Joule 3, 2897–2929 (2019).
Andersen, M., Levchenko, S. V., Scheffler, M. & Reuter, Okay. Past scaling relations for the outline of catalytic supplies. ACS Catal. 9, 2752–2759 (2019).
Pablo-García, S. et al. Mechanistic routes towards C3 merchandise in copper-catalysed CO2 electroreduction. Catal. Sci. Technol. 12, 409–417 (2022).
Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).
Kresse, G. & Furthmüller, J. Effectivity of ab-initio whole power calculations for metals and semiconductors utilizing a plane-wave foundation set. Comput. Mater. Sci. 6, 15–50 (1996).
Perdew, J. P., Burke, Okay. & Ernzerhof, M. Generalized gradient approximation made easy. Phys. Rev. Lett. 77, 3865–3868 (1996).
Grimme, S., Ehrlich, S. & Goerigk, L. Impact of the damping perform in dispersion corrected density purposeful idea. J. Comput. Chem. 32, 1456–1465 (2011).
Almora-Barrios, N., Carchini, G., Błoński, P. & López, N. Costless derivation of dispersion coefficients for metallic surfaces. J. Chem. Idea Comput. 10, 5002–5009 (2014).
Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).
Neugebauer, J. & Scheffler, M. Adsorbate–substrate and adsorbate–adsorbate interactions of Na and Okay adlayers on Al(111). Phys. Rev. B 46, 16067–16080 (1992).
Monkhorst, H. J. & Pack, J. D. Particular factors for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).
Steinmann, S. N., Hermawan, A., Jassar, M. B. & Seh, Z. W. Autonomous high-throughput computations in catalysis. Chem Catal. 2, 940–956 (2022).
Weininger, D. SMILES, a chemical language and knowledge system. 1. Introduction to methodology and encoding guidelines. J. Chem. Inf. Mannequin. 28, 31–36 (1988).
Halgren, T. A. Merck molecular drive area. I. Foundation, kind, scope, parameterization, and efficiency of MMFF94. J. Comput. Chem. 17, 490–519 (1996).
Ong, S. P. et al. Python Supplies Genomics (pymatgen): a strong, open-source Python library for supplies evaluation. Comput. Mater. Sci. 68, 314–319 (2013).
Pedregosa, F. et al. Scikit-learn: machine studying in Python. J. Mach. Study. Res. 12, 2825–2830 (2011).
Li, L. et al. A system for massively parallel hyperparameter tuning. In Proc. Machine Studying and Techniques Vol. 2 (eds Dhillon, I. et al.) 230–246 (2020).
Liaw, R. et al. Tune: a analysis platform for distributed mannequin choice and coaching. Preprint at https://arxiv.org/abs/1807.05118 (2018).
Agarap, A. F. Deep studying utilizing rectified linear items (ReLU). Preprint at https://arxiv.org/abs/1803.08375 (2018).
Kingma, D. P. & Ba, J. Adam: a way for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2014).
Fey, M. & Lenssen, J. E. Quick graph illustration studying with Pytorch Geometric. Preprint at https://arxiv.org/abs/1903.02428 (2019).
Paszke, A. et al. Pytorch: an crucial type, high-performance deep studying library. In Advances in Neural Data Processing Techniques Vol. 32, 8024–8035 (Curran Associates, 2019).
Pablo-García. S. Extra is Totally different: Trendy Computational Modeling for Heterogeneous Catalysis. PhD thesis, Univ. Rovira i Virgili, Tarragona (2022).
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring community construction, dynamics, and performance utilizing NetworkX. In Proc. seventh Python in Science Convention (eds Varoquaux, G. et al.) 11–15 (2008).
Van Rossum, G. & Drake, F. L. Python 3 Reference Guide (CreateSpace, 2009).
Hunter, J. D. Matplotlib: a 2D graphics atmosphere. Comput. Sci. Eng. 9, 90–95 (2007).
Waskom, M. L. seaborn: statistical information visualization. J. Open Supply Softw. 6, 3021 (2021).
Pablo-García, S. & Morandi, S. GAME-Web (0.2.0). Zenodo https://doi.org/10.5281/zenodo.7750394 (2023).