11.1 C
New York
Saturday, April 1, 2023

Sb2S3-templated synthesis of sulfur-doped Sb-N-C with hierarchical structure and excessive steel loading for H2O2 electrosynthesis


  • Li, M. F. et al. Ultrafine jagged platinum nanowires allow ultrahigh mass exercise for the oxygen discount response. Science 354, 1414–1419 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Huang, X. Q. et al. Excessive-performance transition metal-doped Pt3Ni octahedra for oxygen discount response. Science 348, 1230–1234 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, M. et al. Single atomic cerium websites with a excessive coordination quantity for environment friendly oxygen discount in proton-exchange membrane gas cells. ACS Catal. 11, 3923–3929 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, J. et al. Edge-hosted Fe-N3 websites on a multiscale porous carbon framework combining excessive intrinsic exercise with environment friendly mass transport for oxygen discount. Chem. Catal. 1, 1291–1307 (2021).

    Article 

    Google Scholar
     

  • Liu, J. et al. Digital construction regulation of single-atom catalysts for electrochemical oxygen discount to H2O2. Small 18, 2103824 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Brillas, E., Sirés, I. & Oturan, M. A. Electro-Fenton course of and associated electrochemical applied sciences based mostly on Fenton’s response chemistry. Chem. Rev. 109, 6570–6631 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Puértolas, B., Hill, A. Ok., García, T., Solsona, B. & Torrente-Murciano, L. In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: a mini-review. Catal. As we speak 248, 115–127 (2015).

    Article 

    Google Scholar
     

  • Chang, Q. et al. Selling H2O2 manufacturing through 2-electron oxygen discount by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, Ok., Zhao, J. & Wang, H. Catalyst design for electrochemical oxygen discount towards hydrogen peroxide. Adv. Funct. Mater. 30, 2003321 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Siahrostami, S. et al. Enabling direct H2O2 manufacturing via rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jirkovský, J. S. et al. Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 manufacturing. J. Am. Chem. Soc. 133, 19432–19441 (2011).

    Article 

    Google Scholar
     

  • Zhang, Y. et al. Maximizing the catalytic efficiency of Pd@AuxPd1-x nanocubes in H2O2 manufacturing by lowering shell thickness to extend compositional stability. Angew. Chem. Int. Ed. 60, 19643–19647 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Verdaguer-Casadevall, A. et al. Tendencies within the electrochemical synthesis of H2O2: enhancing exercise and selectivity by electrocatalytic web site engineering. Nano Lett. 14, 1603–1608 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Gupta, S. et al. Engineering favorable morphology and construction of Fe-N-C oxygen-reduction catalysts via tuning of nitrogen/carbon precursors. ChemSusChem 10, 774–785 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Zitolo, A. et al. Identification of catalytic websites for oxygen discount in iron- and nitrogen-doped graphene supplies. Nat. Mater. 14, 937–942 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chung Hoon, T. et al. Direct atomic-level perception into the lively websites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Chen, Y. et al. Single-atom catalysts: artificial methods and electrochemical purposes. Joule 2, 1242–1264 (2018).

    Article 
    CAS 

    Google Scholar
     

  • He, G., Yan, M., Gong, H., Fei, H. & Wang, S. Ultrafast artificial methods beneath excessive heating situations towards single-atom catalysts. Int. J. Extrem. Manuf. 4, 032003 (2022).

    Article 

    Google Scholar
     

  • Liu, R. et al. Design of aligned porous carbon movies with single-atom Co-N-C websites for high-current-density hydrogen era. Adv. Mater. 33, 2103533 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gong, H. et al. Low-coordinated Co-N-C on oxygenated graphene for environment friendly electrocatalytic H2O2 manufacturing. Adv. Funct. Mater. 32, 2106886 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Wu, Z.-Y. et al. Electrochemical ammonia synthesis through nitrate discount on Fe single atom catalyst. Nat. Commun. 12, 2870 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Molten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a excessive density of catalytically accessible Fe-N4 lively websites and excellent oxygen discount response efficiency. Adv. Power Mater. 11, 2100219 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liang, Z. et al. Extremely curved nanostructure-coated Co, N-doped carbon supplies for oxygen electrocatalysis. Angew. Chem. Int. Ed. 60, 12759–12764 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Shang, H. et al. Engineering remoted Mn-N2C2 atomic interface websites for environment friendly bifunctional oxygen discount and evolution response. Nano Lett. 20, 5443–5450 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Fei, H. et al. Basic synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic actions. Nat. Catal. 1, 63–72 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Jung, E. et al. Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 manufacturing. Nat. Mater. 19, 436–442 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wang, Q. et al. Atomically dispersed s-block magnesium websites for electroreduction of CO2 to CO. Angew. Chem. Int. Ed. 60, 25241–25245 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Tuning the p-orbital electron construction of s-block steel Ca permits a high-performance electrocatalyst for oxygen discount. Adv. Mater. 33, 2107103 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, E. et al. Engineering the native atomic environments of indium single-atom catalysts for environment friendly electrochemical manufacturing of hydrogen peroxide. Angew. Chem. Int. Ed. 61, e202117347 (2022).

    CAS 

    Google Scholar
     

  • Xu, F. et al. Atomic Sn-enabled high-utilization, large-capacity, and long-life Na anode. Sci. Adv. 8, eabm7489 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Teng, Z. et al. Atomically dispersed antimony on carbon nitride for the factitious photosynthesis of hydrogen peroxide. Nat. Catal. 4, 374–384 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yang, X. et al. Enhance selectivity of HCOO utilizing anchored Bi single atoms in direction of CO2 discount. ChemSusChem 13, 6307–6311 (2020).

    CAS 

    Google Scholar
     

  • Guo, W. et al. Atomic indium catalysts for switching CO2 electroreduction merchandise from formate to CO. J. Am. Chem. Soc. 143, 6877–6885 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. et al. Atomically dispersed semimetallic selenium on porous carbon membrane as an electrode for hydrazine gas cells. Angew. Chem. Int. Ed. 58, 13466–13471 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, E. et al. Bismuth single atoms ensuing from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 discount. J. Am. Chem. Soc. 141, 16569–16573 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Wang, T. et al. P-block atomically dispersed antimony catalyst for extremely environment friendly oxygen discount response. Angew. Chem. Int. Ed. 60, 21237–21241 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Luo, F. et al. P-block single-metal-site tin/nitrogen-doped carbon gas cell cathode catalyst for oxygen discount response. Nat. Mater. 19, 1215–1223 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hu, H. et al. Atomically dispersed selenium websites on nitrogen-doped carbon for environment friendly electrocatalytic oxygen discount. Angew. Chem. Int. Ed. 61, e202114441 (2022).

    CAS 

    Google Scholar
     

  • Gu, Y., Xi, B., Zhang, H., Ma, Y. & Xiong, S. Activation of main-group Sb atomic websites for oxygen discount catalysis. Angew. Chem. Int. Ed. 61, e202202200 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, S. et al. Turning main-group ingredient magnesium right into a extremely lively electrocatalyst for oxygen discount response. Nat. Commun. 11, 938 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhang, D. et al. Atomically dispersed antimony on N-doped carbon for extremely environment friendly oxygen discount response. Chem. Eng. J. 439, 135700 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xiong, Y. et al. Cobalt single atom web site catalysts with ultrahigh steel loading for enhanced cardio oxidation of ethylbenzene. Nano Res. 14, 2418–2423 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wu, J., Xiong, L., Zhao, B., Liu, M. & Huang, L. Densely populated single atom catalysts. Small Strategies 4, 1900540 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, Z. et al. Rising ultrahigh-density single-atom catalysts for versatile heterogeneous catalysis purposes: redefinition, current progress, and challenges. Small Struct. 3, 2200041 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zandiatashbar, A. et al. Impact of defects on the intrinsic power and stiffness of graphene. Nat. Commun. 5, 3186 (2014).

    Article 
    ADS 

    Google Scholar
     

  • Jiang, Z. et al. Discovery of important group single Sb-N4 lively websites for CO2 electroreduction to formate with excessive effectivity. Power Environ. Sci. 13, 2856–2863 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Deng, D. et al. A single iron web site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Artyushkova, Ok. Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. J. Vac. Sci. Technol. A 38, 031002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Yan, X. et al. Coupling extremely dispersed Sb2S3 nanodots with nitrogen/sulfur dual-doped porous carbon nanosheets for environment friendly immobilization and catalysis of polysulfides conversion. Chem. Eng. J. 420, 127688 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Li, R. & Wang, D. Understanding the structure-performance relationship of lively websites at atomic scale. Nano Res. 15, 6888–6923 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Li, Q. et al. Fe remoted single atoms on S, N codoped carbon by copolymer pyrolysis technique for extremely environment friendly oxygen discount response. Adv. Mater. 30, 1800588 (2018).

    Article 

    Google Scholar
     

  • Chen, S. et al. Faulty carbon-based supplies for the electrochemical synthesis of hydrogen peroxide. ACS Maintain. Chem. Eng. 6, 311–317 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Blöchl, P. E. Projector augmented-wave methodology. Phys. Rev. B 50, 17953–17979 (1994).

    Article 
    ADS 

    Google Scholar
     

  • Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hamann, D. R. Generalized gradient concept for silica section transitions. Phys. Rev. Lett. 76, 660–663 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A constant and correct ab initio parametrization of density useful dispersion correction (DFT-D) for the 94 parts H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article 
    ADS 

    Google Scholar
     

  • Nørskov, J. Ok. et al. Origin of the overpotential for oxygen discount at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles