Bakkali, F., Averbeck, S., Averbeck, D. & Idaomar, M. Organic results of important oils–a evaluate. Meals Chem. Toxicol: Int. J. Pub. Brit. Ind. Biol. Res. Assoc. 46(2), 446–475 (2008).
Vigan, M. Important oils: Renewal of curiosity and toxicity. Eur. J. Dermatol. 20(6), 685–692 (2010).
Contreras, Md. M., Algieri, F., Rodriguez-Nogales, A., Gálvez, J. & Segura-Carretero, A. Phytochemical profiling of anti-inflammatory Lavandula extracts by way of RP–HPLC–DAD–QTOF–MS and –MS/MS: Evaluation of their qualitative and quantitative variations. Electrophoresis. 39(9–10), 1284–93 (2018).
Lis-Balchin, M. Lavender: The genus Lavandula (CRC Press, 2002).
Tackholm V, Boulos L. College students’ flora of Egypt. (1974).
El-Garf, I., Grayer, R. J., Kite, G. C. & Veitch, N. C. Hypolaetin 8-O-glucuronide and associated flavonoids from Lavandula coronopifolia and L. pubescens. Biochem. Syst. Ecol. 27(8), 843–6 (1999).
Farshori, N. N. et al. Hepatoprotective potential of Lavandula coronopifolia extracts in opposition to ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells. Toxicol. Ind. Well being 31(8), 727–737 (2015).
Abdelaziz, S. et al. Extremely efficiency liquid chromatography-tandem mass spectrometeric evaluation of ethyl acetate fraction from saudi Lavandula coronopifolia Poir and analysis of its cytotoxic and antioxidant actions. J. Herbmed. Pharmacol. 9(3), 268–276 (2020).
Ghanimi, R., Ouhammou, A., El Atki, Y. & Cherkaoui, M. Antioxidant and antibacterial actions of important oils from three Moroccan species (Lavandula mairei Humbert, Lavandula dentata L. and Lavandula stoechas L.). Lazaroa 33, 64–71 (2021).
Elsbaey, M., Mwakalukwa, R., Shimizu, Okay. & Miyamoto, T. Pentacylic triterpenes from Lavandula coronopifolia: Construction associated inhibitory exercise on α-glucosidase. Nat. Prod. Res. 35(9), 1436–1444 (2021).
Anchordoquy, T. J. et al. Mechanisms and limitations in most cancers nanomedicine: addressing challenges In search of Options. ACS Nano. 11(1), 12–18 (2017).
Babaei, P. NMDA and AMPA receptors dysregulation in Alzheimer’s illness. Eur. J. Pharmacol. 908, 174310 (2021).
Chang, P. Okay. Y., Verbich, D. & McKinney, R. A. AMPA receptors as drug targets in neurological illness–benefits, caveats, and future outlook. Eur. J. Neurosci. 35(12), 1908–1916 (2012).
Gorji, A. Lavender and the nervous system. Evid. Based mostly Complement Alter. Med. 2013, 681304 (2013).
Vakili, A., Sharifat, S., Akhavan, M. M. & Bandegi, A. R. Impact of lavender oil (Lavandula angustifolia) on cerebral edema and its potential mechanisms in an experimental mannequin of stroke. Mind Res. 1548, 56–62 (2014).
Liu, X., Hunter, C., Weiss, H. R. & Chi, O. Z. Results of blockade of ionotropic glutamate receptors on blood–mind barrier disruption in focal cerebral ischemia. Neurol. Sci. 31(6), 699–703 (2010).
Rahmati, B., Khalili, M., Roghani, M. & Ahghari, P. Anti-epileptogenic and antioxidant impact of Lavandula officinalis aerial half extract in opposition to pentylenetetrazol-induced kindling in male mice. J. Ethnopharmacol. 148(1), 152–157 (2013).
Zhao, Y., Chen, S., Swensen, A. C., Qian, W.-J. & Gouaux, E. J. S. Structure and subunit association of native AMPA receptors elucidated by cryo-EM. Science 364(6438), 355–362 (2019).
Mansour, M., Nagarajan, N., Nehring, R. B., Clements, J. D. & Rosenmund, C. Heteromeric AMPA receptors assemble with a most well-liked subunit stoichiometry and spatial association. Neuron 32(5), 841–853 (2001).
Kamalova, A. & Nakagawa, T. AMPA receptor construction and auxiliary subunits. J. Physiol. 599(2), 453–469 (2021).
Coombs, I. D. et al. Homomeric GluA2 (R) AMPA receptors can conduct when desensitized. Nat. Commun. 10(1), 1–13 (2019).
Kessels, H. W. & Malinow, R. Synaptic AMPA receptor plasticity and conduct. Neuron 61(3), 340–350 (2009).
Richardson, R. R., Crawford, D. C., Ngai, J. & Beckel-Mitchener, A. C. Advancing scientific excellence by inclusivity within the NIH BRAIN Initiative. Neuron 109(21), 3361–3364 (2021).
Jaradat, N., Adwan, L., Okay’aibni, S., Shraim, N. & Zaid, A. N. Chemical composition, anthelmintic, antibacterial and antioxidant results of Thymus bovei important oil. BMC Complement. Altern. Med. 16(1), 1–7 (2016).
Jaradat, N. Quantitative estimations for the unstable oil by utilizing hydro-distillation and microwave accelerated distillation strategies from Ruta graveolens L. and Ruta chalepensis L. leaves from Jerusalem space/Palestine. Mor. J. Chem. 4(1), 4–1 (2016).
Jaradat, N. et al. Chemical constituents, antioxidant, cyclooxygenase inhibitor, and cytotoxic actions of Teucrium pruinosum boiss. Important oil. . BioMed. Res. Int. 2018(9), 4034689 (2018).
Hawash, M. et al. Synthesis and organic analysis of benzodioxole derivatives as potential anticancer and antioxidant brokers. Heterocycl. Commun. 26(1), 157–167 (2020).
Qneibi, M. et al. The inhibitory function of curcumin derivatives on AMPA receptor subunits and their impact on the gating biophysical properties. Eur. J. Pharm. Sci. 136, 104951 (2019).
Qneibi, M. et al. Inhibition and evaluation of the biophysical gating properties of GluA2 and GluA2/A3 AMPA receptors utilizing curcumin derivatives. PLoS ONE 14(8), e0221132 (2019).
Qneibi, M. et al. The AMPA receptor biophysical gating properties and binding website: Give attention to novel curcumin-based diazepines as non-competitive antagonists. Bioorg. Chem. 116, 105406 (2021).
Qneibi, M., Hanania, M., Jaradat, N., Emwas, N. & Radwan, S. Inula viscosa (L.) Greuter, phytochemical composition, antioxidant, complete phenolic content material, complete flavonoids content material and neuroprotective results. Europ. J. Integr. Med. 42, 101291 (2021).
Yao, Y. et al. Juglanthraquinone C, a novel pure compound derived from Juglans mandshurica Maxim, induces S section arrest and apoptosis in HepG2 cells. Apoptosis 17(8), 832–841 (2012).
Al-Sheddi, E. S. et al. Analysis of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. important oil in human hepatocellular carcinoma cell line. Saudi Pharm. J. 27(7), 1053–60 (2019).
Schoonen, W., Roos, J., Westerink, W. & Débiton, E. Cytotoxic results of 110 reference compounds on HepG2 cells and for 60 compounds on HeLa, ECC-1 and CHO cells. II mechanistic assays on NAD(P)H, ATP and DNA contents Toxicology in vitro. Int. J. Pub. Assoc. BIBRA. 19, 491–503 (2005).
Ait Stated, L. et al. Chemical composition and antibacterial exercise of Lavandula coronopifolia important oil in opposition to antibiotic-resistant micro organism. Nat. Prod. Res. 29(6), 582–585 (2015).
Hasanin, M. S. et al. Inexperienced silver nanoparticles based mostly on Lavandula coronopifolia aerial components extract in opposition to mycotic mastitis in cattle. Biocatal. Agric. Biotechnol. 42, 102350 (2022).
Naseef, H. et al. Phytochemical characterization and assessments of antimicrobial, cytotoxic and anti inflammatory properties of Lavandula coronopifolia Poir. unstable oil from Palestine. Arab. J. Chem. 15(9), 104069 (2022).
Messaoud, C., Chograni, H. & Boussaid, M. Chemical composition and antioxidant actions of important oils and methanol extracts of three wild Lavandula L. species. Nat. Prod Res. 26(21), 1976–84 (2012).
Moghaddam M, Mehdizadeh L. Chemistry of important oils and components influencing their constituents. Gentle Chem. Meals Fermen.( 2017):379–419.
Aburjai, T., Hudiab, M. & Cavrini, V. Chemical composition of the important oil from totally different aerial components of lavender (Lavandula coronopofolia Poiert)(Lamiaceae) grown in Jordan. J. Essent. Oil Res. 17(1), 49–51 (2005).
Chater, T. E. & Goda, Y. The function of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Entrance. Cell Neurosci. 8, 401 (2014).
Twomey, E. C. & Sobolevsky, A. I. Structural mechanisms of gating in ionotropic glutamate receptors. Biochemistry 57(3), 267–276 (2018).
Teyler, T. J. et al. Multideterminant function of calcium in hippocampal synaptic plasticity. Hippocampus 4(6), 623–634 (1994).
Ge, Y. & Wang, Y. T. Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Curr. Opin. Neurobiol. 75, 102585 (2022).
Armada-Moreira, A. et al. Going the additional (Synaptic) mile: Excitotoxicity because the street towards neurodegenerative ailments. Entrance. Cell. Neurosci. 14, 90 (2020).
Rossmann, M. et al. Subunit-selective N-terminal area associations manage the formation of AMPA receptor heteromers. EMBO J 30(5), 959–971 (2011).
Greger, I. H., Watson, J. F. & Cull-Sweet, S. G. Structural and purposeful structure of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4), 713–730 (2017).
Robertson, S. J., Burnashev, N. & Edwards, F. A. Ca2+ permeability and kinetics of glutamate receptors in rat medial habenula neurones: Implications for purinergic transmission on this nucleus. J. Phys. 518(2), 539–49 (1999).
Pollok, S. & Reiner, A. Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization. Proc. Natl. Acad. Sci. 117(41), 25851–25858 (2020).
Charsouei, S., Jabalameli, M. R. & Karimi-Moghadam, A. Molecular insights into the function of AMPA receptors within the synaptic plasticity, pathogenesis and therapy of epilepsy: Therapeutic potentials of perampanel and antisense oligonucleotide (ASO) know-how. Acta Neurol. Belg. 120(3), 531–544 (2020).