Reche, I., Gallardo, I. & Guirado, G. Electrochemical research of CO2 in imidazolium ionic liquids utilizing silver as a working electrode: an appropriate strategy for figuring out diffusion coefficients, solubility values, and electrocatalytic results. RSC Adv. 4, 65176–65183 (2014).
Anderson, T. R., Hawkins, E. & Jones, P. D. CO2, the greenhouse impact and international warming: from the pioneering work of Arrhenius and callendar to at the moment’s earth system fashions. Endeavour 40, 178–187 (2016).
Seneviratne, S. I. et al. The numerous attainable climates from the Paris Settlement’s intention of 1.5 °C warming. Nature 558, 41–49 (2018).
Friedemann, A. J. Life after Fossil Fuels: A Actuality Test on Various Power Vol. 81 (Springer Nature Switzerland AG, 2021).
Xu, L., Xiu, Y., Liu, F., Liang, Y. & Wang, S. Analysis progress in conversion of CO2 to precious fuels. Molecules 25, 3653 (2020).
Garcia, J. A., Villen-Guzman, M., Rodriguez-Maroto, J. M. & Paz-Garcia, J. M. Technical evaluation of CO2 seize pathways and applied sciences. J. Environ. Chem. Eng. 10, 108470 (2022).
Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 seize. Nat. Catal. 4, 952–958 (2021).
Zhang, X., Wang, J., Track, Z. & Zhou, T. Knowledge-driven ionic liquid design for CO2 Seize: molecular construction optimization and DFT verification. Ind. Eng. Chem. Res. 60, 9992–10000 (2021).
Kumaravel, V., Bartlett, J. & Pillai, S. C. Photoelectrochemical conversion of Carbon Dioxide (CO2) into fuels and value-added merchandise. ACS Power Lett. https://doi.org/10.1021/acsenergylett.9b02585 (2020).
Quan, Y., Zhu, J. & Zheng, G. Electrocatalytic reactions for changing CO2 to worth‐added merchandise. Small Sci. 1, 2100043 (2021).
Corral, D. et al. Superior manufacturing for electrosynthesis of fuels and chemical compounds from CO2. Power Environ. Sci. 14, 3064–3074 (2021).
Kou, Z. et al. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide discount. Electrochem. Power Rev. 5, 82–111 (2022).
Hernández, S. et al. Syngas manufacturing from electrochemical discount of CO2: Present standing and potential implementation. Inexperienced. Chem. 19, 2326–2346 (2017).
Franke, R., Selent, D. & Börner, A. Utilized hydroformylation. Chem. Rev. 112, 5675–5732 (2012).
De María, R., Díaz, I., Rodríguez, M. & Sáiz, A. Industrial methanol from syngas: Kinetic research and course of simulation. Int. J. Chem. React. Eng. 11, 469–477 (2013).
Feng, J., Zeng, S., Feng, J., Dong, H. & Zhang, X. CO2 Electroreduction in ionic liquids: a assessment. Chin. J. Chem. 36, 961–970 (2018).
Liu, X. et al. Understanding traits in electrochemical carbon dioxide discount charges. Nat. Commun. 8, 1–7 (2017).
Shi, C., Chan, Ok., Yoo, J. S. & Nørskov, J. Ok. Limitations of electrochemical CO2 discount on transition metals. Org. Course of Res. Dev. 20, 1424–1430 (2016).
Koshy, D. M. et al. Chemical modifications of Ag catalyst surfaces with imidazolium ionomers modulate H2Evolution charges throughout electrochemical CO2 discount. J. Am. Chem. Soc. 143, 14712–14725 (2021).
Han, Z., Kortlever, R., Chen, H. Y., Peters, J. C. & Agapie, T. CO2 discount selective for C≥2 merchandise on polycrystalline copper with N-substituted pyridinium components. ACS Cent. Sci. 3, 853–859 (2017).
Wang, J. et al. Selective CO2 electrochemical discount enabled by a tricomponent copolymer modifier on a copper floor. J. Am. Chem. Soc. 143, 2857–2865 (2021).
Jenkins, H. D. B. Ionic liquids-an overview. Sci. Prog. 94, 265–297 (2011).
Tanner, E. E. L., Batchelor-McAuley, C. & Compton, R. G. Carbon dioxide discount in room-temperature ionic liquids: The impact of the selection of electrode materials, cation, and anion. J. Phys. Chem. C. 120, 26442–26447 (2016).
Faggion, D., Gonçalves, W. D. G. & Dupont, J. CO2 electroreduction in ionic liquids. Entrance. Chem. 7, 1–8 (2019).
Freire, M. G., Neves, C. M. S. S., Marrucho, I. M., Coutinho, J. A. P. & Fernandes, A. M. Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010).
Swatloski, R. P., Holbrey, J. D. & Rogers, R. D. Ionic liquids should not at all times inexperienced: hydrolysis of 1-butyl-3- methylimidazolium hexafluorophosphate. Inexperienced. Chem. 5, 361–363 (2003).
Firet, N. J. & Smith, W. A. Probing the response mechanism of CO2 electroreduction over Ag movies through operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).
Motobayashi, Ok., Maeno, Y. & Ikeda, Ok. In situ spectroscopic characterization of an intermediate of CO2 electroreduction on a Au electrode in room-temperature ionic liquids. J. Phys. Chem. C. 126, 11981–11986 (2022).
Ratschmeier, B. & Braunschweig, B. Cations of ionic liquid electrolytes can act as a promoter for CO2 electrocatalysis by reactive intermediates and electrostatic stabilization. J. Phys. Chem. C. 125, 16498–16507 (2021).
Wang, Y. et al. Activation of CO2 by ionic liquid EMIM-BF4 within the electrochemical system: a theoretical research. Phys. Chem. Chem. Phys. 17, 23521–23531 (2015).
Al-Omari, A. A., Yamani, Z. H. & Nguyen, H. L. Electrocatalytic CO2 discount: from homogeneous catalysts to heterogeneous-based reticular chemistry. Molecules 23, 1–12 (2018).
Sharifi Golru, S. & Biddinger, E. J. Impact of anion in diluted imidazolium-based ionic liquid/buffer electrolytes for CO2 electroreduction on copper. Electrochim. Acta 361, 136787 (2020).
Ueno, Ok., Tokuda, H. & Watanabe, M. Ionicity in ionic liquids: correlation with ionic construction and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010).
MacFarlane, D. R. et al. On the idea of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).
DeVos, N., Maton, C. & Stevens, C. V. Electrochemical stability of ionic liquids: common influences and degradation mechanisms. ChemElectroChem 1, 1258–1270 (2014).
Zhou, F. et al. Extremely selective electrocatalytic discount of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem. commun. 46, 103–106 (2014).
Zhou, Z. Bin, Matsumoto, H. & Tatsumi, Ok. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem. A Eur. J. 12, 2196–2212 (2006).
O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C. & Compton, R. G. Impact of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Knowledge 53, 2884–2891 (2008).
Buzzeo, M. C., Hardacre, C. & Compton, R. G. Prolonged electrochemical home windows made accessible by room temperature ionic liquid/natural solvent electrolyte methods. ChemPhysChem 7, 176–180 (2006).
McEwen, A. B., Ngo, H. L., LeCompte, Ok. & Goldman, J. L. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor functions. J. Electrochem. Soc. 146, 1687–1695 (1999).
Kazemiabnavi, S., Zhang, Z., Thornton, Ok. & Banerjee, S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Phys. Chem. B 120, 5691–5702 (2016).
Ramdin, M., De Loos, T. W. & Vlugt, T. J. H. State-of-the-art of CO2 seize with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012).
Report, Q. T. Design and Analysis of Ionic Liquids as Novel CO2 Absorbents. https://www.osti.gov/servlets/purl/969140 (2005).
Chinn et al. US 7527775 B2—CO2 removing from fuel utilizing ionic liquid absorbents. US patent 7527775 (2009).
Blath, J., Deubler, N., Hirth, T. & Schiestel, T. Chemisorption of carbon dioxide in imidazolium primarily based ionic liquids with carboxylic anions. Chem. Eng. J. 181–182, 152–158 (2012).
Tommasi, I. & Sorrentino, F. Synthesis of 1,3-dialkylimidazolium-2-carboxylates by direct carboxylation of 1,3-dialkylimidazolium chlorides with CO2. Tetrahedron Lett. 47, 6453–6456 (2006).
Goldberg, R. N., Kishore, N. & Lennen, R. M. Thermodynamic portions for the ionization reactions of buffers. J. Phys. Chem. Ref. Knowledge 31, 231–370 (2002).
Shiflett, M. B. et al. Section habits of CO2 in room-temperature ionic liquid 1-ethyl-3-ethylimidazolium acetate. ChemPhysChem 13, 1806–1817 (2012).
Cabaço, M. I. et al. Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by altering the character of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functio. J. Chem. Phys. 140, 244307 (2014).
Chiarotto, I., Feroci, M. & Inesi, A. First direct proof of N-heterocyclic carbene in BMIm acetate ionic liquids. An electrochemical and chemical research on the position of temperature. N. J. Chem. 41, 7840–7843 (2017).
Samanta, S. R., Cai, R. & Percec, V. A rational strategy to activated polyacrylates and polymethacrylates by utilizing a mixture of mannequin reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate. Polym. Chem. 6, 3259–3270 (2015).
Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A. & Leito, I. Acidity of sturdy acids in water and dimethyl sulfoxide. J. Phys. Chem. A 120, 3663–3669 (2016).
Fieser, L. F., Fieser, M., Ho, T.-L. & Ho, T.-L. Tetrafluoroboric acid. In Fieser and Fieser’s Reagents for Natural Synthesis, (eds Fieser, L. F., Fieser, M. & Ho, T.-L.) https://doi.org/10.1002/9780471264194.fos09591.pub3 (2017).
Urushihara, M., Chan, Ok., Shi, C. & Nørskov, J. Ok. Theoretical research of EMIM+ adsorption on silver electrode surfaces. J. Phys. Chem. C. 119, 20023–20029 (2015).
Li, M. G. et al. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—a mixed in-situ scanning probe microscopy and impedance research. Electrochim. Acta 197, 282–289 (2016).
Thomas, M. et al. Simulating the vibrational spectra of ionic liquid methods: 1-Ethyl-3-methylimidazolium acetate and its mixtures. J. Chem. Phys. 141, 024510 (2014).
Neelakantan, P. Raman Spectrum of Acetonitrile. Proc. Indian Acad. Sci. USA 60, 422–424 (1964).
Aydogan Gokturk, P. et al. XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochim. Acta 234, 37–42 (2017).
Jiang, L. et al. N -Heterocyclic carbenes on close-packed coinage metallic surfaces: Bis-carbene metallic adatom bonding scheme of monolayer movies on Au, Ag and Cu. Chem. Sci. 8, 8301–8308 (2017).
Dery, S. et al. Versatile NO2 -functionalized N-heterocyclic carbene monolayers on Au (111) floor. Chemistry 25, 15067–15072 (2019).
Amit, E. et al. Electrochemical deposition of N-heterocyclic carbene monolayers on metallic surfaces. Nat. Commun. 11, 1–10 (2020).
Lewis, R. J. et al. N-Heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. J. Am. Chem. Soc. 144, 15431–15436 (2022).
Hatsukade, T., Kuhl, Ok. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic discount of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).
Lau, G. P. S. et al. New insights into the position of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J. Am. Chem. Soc. 138, 7820–7823 (2016).
Sahm, C. D. et al. Tuning the native chemical setting of ZnSe quantum dots with dithiols in direction of photocatalytic CO2 discount. Chem. Sci. 13, 5988–5998 (2022).
Sahm, C. D. et al. Imidazolium-modification enhances photocatalytic CO2 discount on ZnSe quantum dots. Chem. Sci. 12, 9078–9087 (2021).
Sánchez-Sánchez, C. M. Electrocatalytic discount of CO2 in imidazolium-based ionic liquids. Encycl. Interfacial Chem. Surf. Sci. Electrochem. 539–551 (2018)
Matsubara, Y., Grills, D. C. & Kuwahara, Y. Thermodynamic points of electrocatalytic CO2 discount in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catal. 5, 6440–6452 (2015).
Lv, J. J. et al. A extremely porous copper electrocatalyst for carbon dioxide discount. Adv. Mater. 30, 1–8 (2018).
König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes within the electrocatalytic discount of CO2. iScience 19, 135–160 (2019).
Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).
Farhat, D. Bookworms and occasion animals: a synthetic labour market with human and social capital accumulation. J. Educ. Work 27, 1–42 (2014).
Rappe, A. M., Rabe, Ok. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).
Haas, P., Tran, F. & Blaha, P. Calculation of the lattice fixed of solids with semilocal functionals. Phys. Rev. B 79, 1–10 (2009).
Liu, L. G. & Bassett, W. A. Compression of Ag and part transformation of NaCl. J. Appl. Phys. 44, 1475–1479 (1973).
Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation fashions. J. Chem. Phys. 150, 041730 (2019).
Dupont, C., Andreussi, O. & Marzari, N. Self-consistent continuum solvation (SCCS): the case of charged methods. J. Chem. Phys. 139, 1–9 (2013).
Liu, X. et al. pH results on the electrochemical discount of CO2 in direction of C2 merchandise on stepped copper. Nat. Commun. 10, 1–10 (2019).
Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. Ok. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Power Environ. Sci. 3, 1311–1315 (2010).
Garino, N. et al. Facilely synthesized nitrogen-doped decreased graphene oxide functionalized with copper ions as electrocatalyst for oxygen discount. npj 2D Mater. Appl. 5, 2 (2021).
Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing picture nudged elastic band methodology for locating saddle factors and minimal power paths. J. Chem. Phys. 113, 9901–9904 (2000).
Lin-Vien, D. et al. The Handbook of Infrared and Raman Attribute Frequencies of Natural Molecules. Elsevier Science 1991, ISBN: 9780080571164