google.com, pub-4214183376442067, DIRECT, f08c47fec0942fa0
22.5 C
New York
Tuesday, June 6, 2023

Understanding the position of imidazolium-based ionic liquids within the electrochemical CO2 discount response


  • Reche, I., Gallardo, I. & Guirado, G. Electrochemical research of CO2 in imidazolium ionic liquids utilizing silver as a working electrode: an appropriate strategy for figuring out diffusion coefficients, solubility values, and electrocatalytic results. RSC Adv. 4, 65176–65183 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Anderson, T. R., Hawkins, E. & Jones, P. D. CO2, the greenhouse impact and international warming: from the pioneering work of Arrhenius and callendar to at the moment’s earth system fashions. Endeavour 40, 178–187 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Seneviratne, S. I. et al. The numerous attainable climates from the Paris Settlement’s intention of 1.5 °C warming. Nature 558, 41–49 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Friedemann, A. J. Life after Fossil Fuels: A Actuality Test on Various Power Vol. 81 (Springer Nature Switzerland AG, 2021).

  • Xu, L., Xiu, Y., Liu, F., Liang, Y. & Wang, S. Analysis progress in conversion of CO2 to precious fuels. Molecules 25, 3653 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, J. A., Villen-Guzman, M., Rodriguez-Maroto, J. M. & Paz-Garcia, J. M. Technical evaluation of CO2 seize pathways and applied sciences. J. Environ. Chem. Eng. 10, 108470 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 seize. Nat. Catal. 4, 952–958 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, X., Wang, J., Track, Z. & Zhou, T. Knowledge-driven ionic liquid design for CO2 Seize: molecular construction optimization and DFT verification. Ind. Eng. Chem. Res. 60, 9992–10000 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kumaravel, V., Bartlett, J. & Pillai, S. C. Photoelectrochemical conversion of Carbon Dioxide (CO2) into fuels and value-added merchandise. ACS Power Lett. https://doi.org/10.1021/acsenergylett.9b02585 (2020).

  • Quan, Y., Zhu, J. & Zheng, G. Electrocatalytic reactions for changing CO2 to worth‐added merchandise. Small Sci. 1, 2100043 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Corral, D. et al. Superior manufacturing for electrosynthesis of fuels and chemical compounds from CO2. Power Environ. Sci. 14, 3064–3074 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kou, Z. et al. Fundamentals, on-going advances and challenges of electrochemical carbon dioxide discount. Electrochem. Power Rev. 5, 82–111 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hernández, S. et al. Syngas manufacturing from electrochemical discount of CO2: Present standing and potential implementation. Inexperienced. Chem. 19, 2326–2346 (2017).

    Article 

    Google Scholar
     

  • Franke, R., Selent, D. & Börner, A. Utilized hydroformylation. Chem. Rev. 112, 5675–5732 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • De María, R., Díaz, I., Rodríguez, M. & Sáiz, A. Industrial methanol from syngas: Kinetic research and course of simulation. Int. J. Chem. React. Eng. 11, 469–477 (2013).

    Article 

    Google Scholar
     

  • Feng, J., Zeng, S., Feng, J., Dong, H. & Zhang, X. CO2 Electroreduction in ionic liquids: a assessment. Chin. J. Chem. 36, 961–970 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Liu, X. et al. Understanding traits in electrochemical carbon dioxide discount charges. Nat. Commun. 8, 1–7 (2017).


    Google Scholar
     

  • Shi, C., Chan, Ok., Yoo, J. S. & Nørskov, J. Ok. Limitations of electrochemical CO2 discount on transition metals. Org. Course of Res. Dev. 20, 1424–1430 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Koshy, D. M. et al. Chemical modifications of Ag catalyst surfaces with imidazolium ionomers modulate H2Evolution charges throughout electrochemical CO2 discount. J. Am. Chem. Soc. 143, 14712–14725 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Han, Z., Kortlever, R., Chen, H. Y., Peters, J. C. & Agapie, T. CO2 discount selective for C≥2 merchandise on polycrystalline copper with N-substituted pyridinium components. ACS Cent. Sci. 3, 853–859 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Selective CO2 electrochemical discount enabled by a tricomponent copolymer modifier on a copper floor. J. Am. Chem. Soc. 143, 2857–2865 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jenkins, H. D. B. Ionic liquids-an overview. Sci. Prog. 94, 265–297 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, E. E. L., Batchelor-McAuley, C. & Compton, R. G. Carbon dioxide discount in room-temperature ionic liquids: The impact of the selection of electrode materials, cation, and anion. J. Phys. Chem. C. 120, 26442–26447 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Faggion, D., Gonçalves, W. D. G. & Dupont, J. CO2 electroreduction in ionic liquids. Entrance. Chem. 7, 1–8 (2019).

    Article 

    Google Scholar
     

  • Freire, M. G., Neves, C. M. S. S., Marrucho, I. M., Coutinho, J. A. P. & Fernandes, A. M. Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions in imidazolium-based ionic liquids. J. Phys. Chem. A 114, 3744–3749 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Swatloski, R. P., Holbrey, J. D. & Rogers, R. D. Ionic liquids should not at all times inexperienced: hydrolysis of 1-butyl-3- methylimidazolium hexafluorophosphate. Inexperienced. Chem. 5, 361–363 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Firet, N. J. & Smith, W. A. Probing the response mechanism of CO2 electroreduction over Ag movies through operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Motobayashi, Ok., Maeno, Y. & Ikeda, Ok. In situ spectroscopic characterization of an intermediate of CO2 electroreduction on a Au electrode in room-temperature ionic liquids. J. Phys. Chem. C. 126, 11981–11986 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ratschmeier, B. & Braunschweig, B. Cations of ionic liquid electrolytes can act as a promoter for CO2 electrocatalysis by reactive intermediates and electrostatic stabilization. J. Phys. Chem. C. 125, 16498–16507 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wang, Y. et al. Activation of CO2 by ionic liquid EMIM-BF4 within the electrochemical system: a theoretical research. Phys. Chem. Chem. Phys. 17, 23521–23531 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Al-Omari, A. A., Yamani, Z. H. & Nguyen, H. L. Electrocatalytic CO2 discount: from homogeneous catalysts to heterogeneous-based reticular chemistry. Molecules 23, 1–12 (2018).

    Article 

    Google Scholar
     

  • Sharifi Golru, S. & Biddinger, E. J. Impact of anion in diluted imidazolium-based ionic liquid/buffer electrolytes for CO2 electroreduction on copper. Electrochim. Acta 361, 136787 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Ueno, Ok., Tokuda, H. & Watanabe, M. Ionicity in ionic liquids: correlation with ionic construction and physicochemical properties. Phys. Chem. Chem. Phys. 12, 1649–1658 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • MacFarlane, D. R. et al. On the idea of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • DeVos, N., Maton, C. & Stevens, C. V. Electrochemical stability of ionic liquids: common influences and degradation mechanisms. ChemElectroChem 1, 1258–1270 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, F. et al. Extremely selective electrocatalytic discount of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids. Electrochem. commun. 46, 103–106 (2014).

    Article 

    Google Scholar
     

  • Zhou, Z. Bin, Matsumoto, H. & Tatsumi, Ok. Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chem. A Eur. J. 12, 2196–2212 (2006).

    Article 
    CAS 

    Google Scholar
     

  • O’Mahony, A. M., Silvester, D. S., Aldous, L., Hardacre, C. & Compton, R. G. Impact of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Knowledge 53, 2884–2891 (2008).

    Article 

    Google Scholar
     

  • Buzzeo, M. C., Hardacre, C. & Compton, R. G. Prolonged electrochemical home windows made accessible by room temperature ionic liquid/natural solvent electrolyte methods. ChemPhysChem 7, 176–180 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • McEwen, A. B., Ngo, H. L., LeCompte, Ok. & Goldman, J. L. Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor functions. J. Electrochem. Soc. 146, 1687–1695 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Kazemiabnavi, S., Zhang, Z., Thornton, Ok. & Banerjee, S. Electrochemical stability window of imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Phys. Chem. B 120, 5691–5702 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ramdin, M., De Loos, T. W. & Vlugt, T. J. H. State-of-the-art of CO2 seize with ionic liquids. Ind. Eng. Chem. Res. 51, 8149–8177 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Report, Q. T. Design and Analysis of Ionic Liquids as Novel CO2 Absorbents. https://www.osti.gov/servlets/purl/969140 (2005).

  • Chinn et al. US 7527775 B2—CO2 removing from fuel utilizing ionic liquid absorbents. US patent 7527775 (2009).

  • Blath, J., Deubler, N., Hirth, T. & Schiestel, T. Chemisorption of carbon dioxide in imidazolium primarily based ionic liquids with carboxylic anions. Chem. Eng. J. 181–182, 152–158 (2012).

    Article 

    Google Scholar
     

  • Tommasi, I. & Sorrentino, F. Synthesis of 1,3-dialkylimidazolium-2-carboxylates by direct carboxylation of 1,3-dialkylimidazolium chlorides with CO2. Tetrahedron Lett. 47, 6453–6456 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Goldberg, R. N., Kishore, N. & Lennen, R. M. Thermodynamic portions for the ionization reactions of buffers. J. Phys. Chem. Ref. Knowledge 31, 231–370 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Shiflett, M. B. et al. Section habits of CO2 in room-temperature ionic liquid 1-ethyl-3-ethylimidazolium acetate. ChemPhysChem 13, 1806–1817 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cabaço, M. I. et al. Understanding chemical reactions of CO2 and its isoelectronic molecules with 1-butyl-3-methylimidazolium acetate by altering the character of the cation: The case of CS2 in 1-butyl-1-methylpyrrolidinium acetate studied by NMR spectroscopy and density functio. J. Chem. Phys. 140, 244307 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Chiarotto, I., Feroci, M. & Inesi, A. First direct proof of N-heterocyclic carbene in BMIm acetate ionic liquids. An electrochemical and chemical research on the position of temperature. N. J. Chem. 41, 7840–7843 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Samanta, S. R., Cai, R. & Percec, V. A rational strategy to activated polyacrylates and polymethacrylates by utilizing a mixture of mannequin reactions and SET-LRP of hexafluoroisopropyl acrylate and methacrylate. Polym. Chem. 6, 3259–3270 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Trummal, A., Lipping, L., Kaljurand, I., Koppel, I. A. & Leito, I. Acidity of sturdy acids in water and dimethyl sulfoxide. J. Phys. Chem. A 120, 3663–3669 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fieser, L. F., Fieser, M., Ho, T.-L. & Ho, T.-L. Tetrafluoroboric acid. In Fieser and Fieser’s Reagents for Natural Synthesis, (eds Fieser, L. F., Fieser, M. & Ho, T.-L.) https://doi.org/10.1002/9780471264194.fos09591.pub3 (2017).

  • Urushihara, M., Chan, Ok., Shi, C. & Nørskov, J. Ok. Theoretical research of EMIM+ adsorption on silver electrode surfaces. J. Phys. Chem. C. 119, 20023–20029 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Li, M. G. et al. The electrochemical interface of Ag(111) in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquid—a mixed in-situ scanning probe microscopy and impedance research. Electrochim. Acta 197, 282–289 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, M. et al. Simulating the vibrational spectra of ionic liquid methods: 1-Ethyl-3-methylimidazolium acetate and its mixtures. J. Chem. Phys. 141, 024510 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Neelakantan, P. Raman Spectrum of Acetonitrile. Proc. Indian Acad. Sci. USA 60, 422–424 (1964).

  • Aydogan Gokturk, P. et al. XPS-evidence for in-situ electrochemically-generated carbene formation. Electrochim. Acta 234, 37–42 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Jiang, L. et al. N -Heterocyclic carbenes on close-packed coinage metallic surfaces: Bis-carbene metallic adatom bonding scheme of monolayer movies on Au, Ag and Cu. Chem. Sci. 8, 8301–8308 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dery, S. et al. Versatile NO2 -functionalized N-heterocyclic carbene monolayers on Au (111) floor. Chemistry 25, 15067–15072 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Amit, E. et al. Electrochemical deposition of N-heterocyclic carbene monolayers on metallic surfaces. Nat. Commun. 11, 1–10 (2020).

    Article 

    Google Scholar
     

  • Lewis, R. J. et al. N-Heterocyclic carbene modified palladium catalysts for the direct synthesis of hydrogen peroxide. J. Am. Chem. Soc. 144, 15431–15436 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hatsukade, T., Kuhl, Ok. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. Insights into the electrocatalytic discount of CO2 on metallic silver surfaces. Phys. Chem. Chem. Phys. 16, 13814–13819 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lau, G. P. S. et al. New insights into the position of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode. J. Am. Chem. Soc. 138, 7820–7823 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sahm, C. D. et al. Tuning the native chemical setting of ZnSe quantum dots with dithiols in direction of photocatalytic CO2 discount. Chem. Sci. 13, 5988–5998 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sahm, C. D. et al. Imidazolium-modification enhances photocatalytic CO2 discount on ZnSe quantum dots. Chem. Sci. 12, 9078–9087 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sánchez-Sánchez, C. M. Electrocatalytic discount of CO2 in imidazolium-based ionic liquids. Encycl. Interfacial Chem. Surf. Sci. Electrochem. 539–551 (2018)

  • Matsubara, Y., Grills, D. C. & Kuwahara, Y. Thermodynamic points of electrocatalytic CO2 discount in acetonitrile and with an ionic liquid as solvent or electrolyte. ACS Catal. 5, 6440–6452 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lv, J. J. et al. A extremely porous copper electrocatalyst for carbon dioxide discount. Adv. Mater. 30, 1–8 (2018).

    Article 

    Google Scholar
     

  • König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes within the electrocatalytic discount of CO2. iScience 19, 135–160 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software program mission for quantum simulations of supplies. J. Phys. Condens. Matter 21, 395502 (2009).

  • Farhat, D. Bookworms and occasion animals: a synthetic labour market with human and social capital accumulation. J. Educ. Work 27, 1–42 (2014).

    Article 

    Google Scholar
     

  • Rappe, A. M., Rabe, Ok. M., Kaxiras, E. & Joannopoulos, J. D. Optimized pseudopotentials. Phys. Rev. B 41, 1227–1230 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Haas, P., Tran, F. & Blaha, P. Calculation of the lattice fixed of solids with semilocal functionals. Phys. Rev. B 79, 1–10 (2009).


    Google Scholar
     

  • Liu, L. G. & Bassett, W. A. Compression of Ag and part transformation of NaCl. J. Appl. Phys. 44, 1475–1479 (1973).

    Article 
    CAS 

    Google Scholar
     

  • Hörmann, N. G., Andreussi, O. & Marzari, N. Grand canonical simulations of electrochemical interfaces in implicit solvation fashions. J. Chem. Phys. 150, 041730 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Dupont, C., Andreussi, O. & Marzari, N. Self-consistent continuum solvation (SCCS): the case of charged methods. J. Chem. Phys. 139, 1–9 (2013).

    Article 

    Google Scholar
     

  • Liu, X. et al. pH results on the electrochemical discount of CO2 in direction of C2 merchandise on stepped copper. Nat. Commun. 10, 1–10 (2019).


    Google Scholar
     

  • Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. Ok. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Power Environ. Sci. 3, 1311–1315 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Garino, N. et al. Facilely synthesized nitrogen-doped decreased graphene oxide functionalized with copper ions as electrocatalyst for oxygen discount. npj 2D Mater. Appl. 5, 2 (2021).

  • Henkelman, G., Uberuaga, B. P. & Jónsson, H. Climbing picture nudged elastic band methodology for locating saddle factors and minimal power paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Lin-Vien, D. et al. The Handbook of Infrared and Raman Attribute Frequencies of Natural Molecules. Elsevier Science 1991, ISBN: 9780080571164

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles