Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361 (2010).
Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in medication. J. Med. Chem. 57, 5845–5859 (2014).
Kumar, S. & Ritika. A short assessment of the organic potential of indole derivatives. Future J. Pharm. Sci. 6, 121 (2020).
Lancianesi, S., Palmieri, A. & Petrini, M. Artificial approaches to 3-(2-nitroalkyl) indoles and their use to entry tryptamines and associated bioactive compounds. Chem. Rev. 114, 7108–7149 (2014).
Kochanowska-Karamyan, A. J. & Hamann, M. T. Marine indole alkaloids: potential new drug leads for the management of melancholy and nervousness. Chem. Rev. 110, 4489–4497 (2010).
Semenov, B. B. & Granik, V. G. Chemistry of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine (Gramine): a assessment. Pharm. Chem. J. 38, 287–310 (2004).
Miller, Ok. A. et al. Biomimetic complete synthesis of malbrancheamide and malbrancheamide B. J. Org. Chem. 73, 3116–3119 (2008).
Kaur, B. P., Kaur, J. & Chimni, S. S. Arenesulfonyl indole: new precursor for diversification of C-3 functionalized indoles. RSC Adv. 11, 2126–2140 (2021).
Palmieri, A. & Petrini, M. Simplified synthesis of 3-(1-arylsulfonylalkyl) indoles and their response with Reformatsky reagents. J. Org. Chem. 72, 1863–1866 (2007).
Grose, Ok. R. & Bjeldanes, L. F. Oligomerization of indole-3-carbinol in aqueous acid. Chem. Res. Toxicol. 5, 188–193 (1992).
Barcock, R. A., Moorcroft, N. A., Storr, R. C., Younger, J. H. & Fuller, L. S. 1-and 2-azafulvenes. Tetrahedron Lett. 34, 1187–1190 (1993).
Palmieri, A., Petrini, M. & Shaikh, R. R. Synthesis of 3-substituted indoles by way of reactive alkylideneindolenine intermediates. Org. Biomol. Chem. 8, 1259–1270 (2010).
Liu, D. et al. Ionic-liquid-catalyzed entry to CTr: an antitumor agent. ACS Maintain. Chem. Eng. 9, 5138–5147 (2021).
Dirlam, J. P., Clark, D. A. & Hecker, S. J. New complete synthesis of (±)-indolmycin. J. Org. Chem. 51, 4920–4924 (1986).
Eryshev, B. Y., Dubinin, A. G., Buyanov, V. N. & Suvorov, N. N. Indole derivatives C. Synthesis of ω-(3-indolyl)alkyl bromides. Chem. Heterocycl. Compd. 10, 1313–1315 (1974).
Liu, R., Zhang, P., Gan, T. & Prepare dinner, J. M. Regiospecific bromination of 3-methylindoles with NBS and its software to the concise synthesis of optically lively uncommon tryptophans current in marine cyclic peptides1. J. Org. Chem. 62, 7447–7456 (1997).
Semmelhack, M. F. & Rhee, H. Formal synthesis of teleocidin a by way of indole-Cr(CO)3 complexes. Tetrahedron Lett. 34, 1399–1402 (1993).
Ahmad, M. U., Libbey, L. M. & Scanlan, R. A. Synthesis of N1-nitroso-3-nitromethylindole: a nonvolatile N-nitroso compound remoted from the nitrosation of the alkaloid gramine. Meals Addit. Contam. 4, 45–48 (1987).
Mekonnen Sanka, B., Mamo Tadesse, D., Teju Bedada, E., Mengesha, E. T. & Babu G, N. Design, synthesis, organic screening and molecular docking research of novel multifunctional 1,4-di (aryl/heteroaryl) substituted piperazine derivatives as potential antitubercular and antimicrobial brokers. Bioorg. Chem. 119, 105568 (2022).
Maki, J. L. et al. Fluorescence polarization assay for inhibitors of the kinase area of receptor interacting protein 1. Anal. Biochem. 427, 164–174 (2012).
Jiang, X. et al. Facile synthesis of 3-halobenzo-heterocyclic-2-carbonyl compounds by way of in situ halogenation-oxidation. Adv. Synth. Catal. 358, 2678–2683 (2016).
Krantz, A. et al. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem. 33, 464–479 (1990).
Crosignani, S. et al. Discovery of a brand new class of potent, selective, and orally bioavailable CRTH2 (DP2) receptor antagonists for the therapy of allergic inflammatory ailments. J. Med. Chem. 51, 2227–2243 (2008).
Cai, M. et al. Novel hybrids from N-hydroxyarylamide and indole ring by way of click on chemistry as histone deacetylase inhibitors with potent antitumor actions. Chin. Chem. Lett. 26, 675–680 (2015).
Davis, B. Crown ether catalyzed deuterium change within the synthesis of benzyl cyanides. J. Label. Compd. Radiopharm. 24, 199–204 (1987).
Ji, X., Li, Y., Jia, Y., Ding, W. & Zhang, Q. Mechanistic insights into the unconventional S-adenosyl-l-methionine enzyme NosL from a substrate analogue and the shunt merchandise. Angew. Chem. Int. Ed. 55, 3334–3337 (2016).
Au, A. Ok., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).
Movsisyan, M. et al. Taming hazardous chemistry by steady move know-how. Chem. Soc. Rev. 45, 4892–4928 (2016).
Plutschack, M. B., Pieber, B., Gilmore, Ok. & Seeberger, P. H. The hitchhiker’s information to move chemistry. Chem. Rev. 117, 11796–11893 (2017).
Kockmann, N., Thenée, P., Fleischer-Trebes, C., Laudadio, G. & Noël, T. Security evaluation in growth and operation of modular continuous-flow processes. React. Chem. Eng. 2, 258–280 (2017).
Cantillo, D. & Kappe, C. O. Halogenation of natural compounds utilizing steady move and microreactor know-how. React. Chem. Eng. 2, 7–19 (2017).
Gérardy, R. et al. Steady move natural chemistry: successes and pitfalls on the interface with present societal challenges. Eur. J. Org. Chem. 2018, 2301–2351 (2018).
Suryawanshi, P. L., Gumfekar, S. P., Bhanvase, B. A., Sonawane, S. H. & Pimplapure, M. S. A assessment on microreactors: reactor fabrication, design, and cutting-edge purposes. Chem. Eng. Sci. 189, 431–448 (2018).
Guidi, M., Seeberger, P. H. & Gilmore, Ok. How one can strategy move chemistry. Chem. Soc. Rev. 49, 8910–8932 (2020).
Yoshida, J.-i. Flash Chemistry: Quick Natural Synthesis in Micro Methods (Wiley, 2008).
Yoshida, J.-i, Nagaki, A. & Yamada, T. Flash chemistry: quick chemical synthesis through the use of microreactors. Chem. Eur. J. 14, 7450–7459 (2008).
Yoshida, J.-i Flash chemistry: move microreactor synthesis based mostly on high-resolution response time management. Chem. Rec. 10, 332–341 (2010).
Yoshida, J.-i, Takahashi, Y. & Nagaki, A. Flash chemistry: move chemistry that can not be finished in batch. Chem. Commun. 49, 9896–9904 (2013).
Nagaki, A., Ashikari, Y., Takumi, M. & Tamaki, T. Flash chemistry makes unattainable organolithium chemistry potential. Chem. Lett. 50, 485–492 (2021).
Fuse, S., Mifune, Y. & Takahashi, T. Environment friendly amide bond formation by way of a speedy and robust activation of carboxylic acids in a microflow reactor. Angew. Chem. Int. Ed. 53, 851–855 (2014).
Fuse, S., Mifune, Y., Nakamura, H. & Tanaka, H. Whole synthesis of feglymycin based mostly on a linear/convergent hybrid strategy utilizing micro-flow amide bond formation. Nat. Commun. 7, 13491 (2016).
Otake, Y., Nakamura, H. & Fuse, S. Fast and gentle synthesis of amino acid N-carboxy anhydrides: basic-to-acidic flash switching in a microflow reactor. Angew. Chem. Int. Ed. 57, 11389–11393 (2018).
Chen, X., Fan, H., Zhang, S., Yu, C. & Wang, W. Facile set up of 2-reverse prenyl performance into indoles by a tandem N-alkylation–aza-cope rearrangement response and its software in synthesis. Chem. Eur. J. 22, 716–723 (2016).
Akkoc, M. Ok., Yuksel, M. Y., Durmaz, I. & Atalay, R. Ç. Design, synthesis, and organic analysis of indole-based 1,4-disubstituted piperazines as cytotoxic brokers. Turk. J. Chem. 36, 515–525 (2012).
Chrostowska, A. et al. UV-photoelectron spectroscopy of BN indoles: experimental and computational digital construction evaluation. J. Am. Chem. Soc. 136, 11813–11820 (2014).
Faul, M. M., Winneroski, L. L. & Krumrich, C. A. Synthesis of rebeccamycin and 11-dechlororebeccamycin. J. Org. Chem. 64, 2465–2470 (1999).
Cambridge Crystallographic Knowledge Centre (CCDC). X-ray crystallographic knowledge of 19: deposition no. CCDC-2201060. https://www.ccdc.cam.ac.uk/data_request/cif (2023).
Gerrard, W. 223. Experiments on the interplay of hydroxy compounds and phosphorus and thionyl halides within the absence and within the presence of tertiary bases. Half III. J. Chem. Soc. 848–853 (1945).
Gerrand, W. & Hudson, H. R. Rearrangement in alkyl teams throughout substitution reactions. Chem. Rev. 65, 697–716 (1965).
Hudson, H. R. Synthesis of optically lively alkyl halides. Synthesis 1969, 112–119 (1969).
Fuson, N., Josien, M. L., Powell, R. L. & Utterback, E. The NH stretching vibration and NH–N hydrogen bonding in a number of fragrant compounds. J. Chem. Phys. 20, 145–152 (1952).