6 C
New York
Saturday, March 25, 2023

Verification of preparations of (1H-indol-3-yl)methyl electrophiles and growth of their microflow speedy technology and substitution


  • Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in medication. J. Med. Chem. 57, 5845–5859 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, S. & Ritika. A short assessment of the organic potential of indole derivatives. Future J. Pharm. Sci. 6, 121 (2020).

    Article 

    Google Scholar
     

  • Lancianesi, S., Palmieri, A. & Petrini, M. Artificial approaches to 3-(2-nitroalkyl) indoles and their use to entry tryptamines and associated bioactive compounds. Chem. Rev. 114, 7108–7149 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kochanowska-Karamyan, A. J. & Hamann, M. T. Marine indole alkaloids: potential new drug leads for the management of melancholy and nervousness. Chem. Rev. 110, 4489–4497 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Semenov, B. B. & Granik, V. G. Chemistry of N-(1H-indol-3-ylmethyl)-N,N-dimethylamine (Gramine): a assessment. Pharm. Chem. J. 38, 287–310 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Miller, Ok. A. et al. Biomimetic complete synthesis of malbrancheamide and malbrancheamide B. J. Org. Chem. 73, 3116–3119 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kaur, B. P., Kaur, J. & Chimni, S. S. Arenesulfonyl indole: new precursor for diversification of C-3 functionalized indoles. RSC Adv. 11, 2126–2140 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Palmieri, A. & Petrini, M. Simplified synthesis of 3-(1-arylsulfonylalkyl) indoles and their response with Reformatsky reagents. J. Org. Chem. 72, 1863–1866 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grose, Ok. R. & Bjeldanes, L. F. Oligomerization of indole-3-carbinol in aqueous acid. Chem. Res. Toxicol. 5, 188–193 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Barcock, R. A., Moorcroft, N. A., Storr, R. C., Younger, J. H. & Fuller, L. S. 1-and 2-azafulvenes. Tetrahedron Lett. 34, 1187–1190 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Palmieri, A., Petrini, M. & Shaikh, R. R. Synthesis of 3-substituted indoles by way of reactive alkylideneindolenine intermediates. Org. Biomol. Chem. 8, 1259–1270 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D. et al. Ionic-liquid-catalyzed entry to CTr: an antitumor agent. ACS Maintain. Chem. Eng. 9, 5138–5147 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dirlam, J. P., Clark, D. A. & Hecker, S. J. New complete synthesis of (±)-indolmycin. J. Org. Chem. 51, 4920–4924 (1986).

    Article 
    CAS 

    Google Scholar
     

  • Eryshev, B. Y., Dubinin, A. G., Buyanov, V. N. & Suvorov, N. N. Indole derivatives C. Synthesis of ω-(3-indolyl)alkyl bromides. Chem. Heterocycl. Compd. 10, 1313–1315 (1974).

    Article 

    Google Scholar
     

  • Liu, R., Zhang, P., Gan, T. & Prepare dinner, J. M. Regiospecific bromination of 3-methylindoles with NBS and its software to the concise synthesis of optically lively uncommon tryptophans current in marine cyclic peptides1. J. Org. Chem. 62, 7447–7456 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Semmelhack, M. F. & Rhee, H. Formal synthesis of teleocidin a by way of indole-Cr(CO)3 complexes. Tetrahedron Lett. 34, 1399–1402 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Ahmad, M. U., Libbey, L. M. & Scanlan, R. A. Synthesis of N1-nitroso-3-nitromethylindole: a nonvolatile N-nitroso compound remoted from the nitrosation of the alkaloid gramine. Meals Addit. Contam. 4, 45–48 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mekonnen Sanka, B., Mamo Tadesse, D., Teju Bedada, E., Mengesha, E. T. & Babu G, N. Design, synthesis, organic screening and molecular docking research of novel multifunctional 1,4-di (aryl/heteroaryl) substituted piperazine derivatives as potential antitubercular and antimicrobial brokers. Bioorg. Chem. 119, 105568 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maki, J. L. et al. Fluorescence polarization assay for inhibitors of the kinase area of receptor interacting protein 1. Anal. Biochem. 427, 164–174 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, X. et al. Facile synthesis of 3-halobenzo-heterocyclic-2-carbonyl compounds by way of in situ halogenation-oxidation. Adv. Synth. Catal. 358, 2678–2683 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Krantz, A. et al. Design and synthesis of 4H-3,1-benzoxazin-4-ones as potent alternate substrate inhibitors of human leukocyte elastase. J. Med. Chem. 33, 464–479 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Crosignani, S. et al. Discovery of a brand new class of potent, selective, and orally bioavailable CRTH2 (DP2) receptor antagonists for the therapy of allergic inflammatory ailments. J. Med. Chem. 51, 2227–2243 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, M. et al. Novel hybrids from N-hydroxyarylamide and indole ring by way of click on chemistry as histone deacetylase inhibitors with potent antitumor actions. Chin. Chem. Lett. 26, 675–680 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Davis, B. Crown ether catalyzed deuterium change within the synthesis of benzyl cyanides. J. Label. Compd. Radiopharm. 24, 199–204 (1987).

    Article 
    CAS 

    Google Scholar
     

  • Ji, X., Li, Y., Jia, Y., Ding, W. & Zhang, Q. Mechanistic insights into the unconventional S-adenosyl-l-methionine enzyme NosL from a substrate analogue and the shunt merchandise. Angew. Chem. Int. Ed. 55, 3334–3337 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Au, A. Ok., Huynh, W., Horowitz, L. F. & Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 55, 3862–3881 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Movsisyan, M. et al. Taming hazardous chemistry by steady move know-how. Chem. Soc. Rev. 45, 4892–4928 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Plutschack, M. B., Pieber, B., Gilmore, Ok. & Seeberger, P. H. The hitchhiker’s information to move chemistry. Chem. Rev. 117, 11796–11893 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kockmann, N., Thenée, P., Fleischer-Trebes, C., Laudadio, G. & Noël, T. Security evaluation in growth and operation of modular continuous-flow processes. React. Chem. Eng. 2, 258–280 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Cantillo, D. & Kappe, C. O. Halogenation of natural compounds utilizing steady move and microreactor know-how. React. Chem. Eng. 2, 7–19 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Gérardy, R. et al. Steady move natural chemistry: successes and pitfalls on the interface with present societal challenges. Eur. J. Org. Chem. 2018, 2301–2351 (2018).

  • Suryawanshi, P. L., Gumfekar, S. P., Bhanvase, B. A., Sonawane, S. H. & Pimplapure, M. S. A assessment on microreactors: reactor fabrication, design, and cutting-edge purposes. Chem. Eng. Sci. 189, 431–448 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Guidi, M., Seeberger, P. H. & Gilmore, Ok. How one can strategy move chemistry. Chem. Soc. Rev. 49, 8910–8932 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, J.-i. Flash Chemistry: Quick Natural Synthesis in Micro Methods (Wiley, 2008).

  • Yoshida, J.-i, Nagaki, A. & Yamada, T. Flash chemistry: quick chemical synthesis through the use of microreactors. Chem. Eur. J. 14, 7450–7459 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, J.-i Flash chemistry: move microreactor synthesis based mostly on high-resolution response time management. Chem. Rec. 10, 332–341 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yoshida, J.-i, Takahashi, Y. & Nagaki, A. Flash chemistry: move chemistry that can not be finished in batch. Chem. Commun. 49, 9896–9904 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Nagaki, A., Ashikari, Y., Takumi, M. & Tamaki, T. Flash chemistry makes unattainable organolithium chemistry potential. Chem. Lett. 50, 485–492 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fuse, S., Mifune, Y. & Takahashi, T. Environment friendly amide bond formation by way of a speedy and robust activation of carboxylic acids in a microflow reactor. Angew. Chem. Int. Ed. 53, 851–855 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Fuse, S., Mifune, Y., Nakamura, H. & Tanaka, H. Whole synthesis of feglymycin based mostly on a linear/convergent hybrid strategy utilizing micro-flow amide bond formation. Nat. Commun. 7, 13491 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Otake, Y., Nakamura, H. & Fuse, S. Fast and gentle synthesis of amino acid N-carboxy anhydrides: basic-to-acidic flash switching in a microflow reactor. Angew. Chem. Int. Ed. 57, 11389–11393 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Chen, X., Fan, H., Zhang, S., Yu, C. & Wang, W. Facile set up of 2-reverse prenyl performance into indoles by a tandem N-alkylation–aza-cope rearrangement response and its software in synthesis. Chem. Eur. J. 22, 716–723 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Akkoc, M. Ok., Yuksel, M. Y., Durmaz, I. & Atalay, R. Ç. Design, synthesis, and organic analysis of indole-based 1,4-disubstituted piperazines as cytotoxic brokers. Turk. J. Chem. 36, 515–525 (2012).


    Google Scholar
     

  • Chrostowska, A. et al. UV-photoelectron spectroscopy of BN indoles: experimental and computational digital construction evaluation. J. Am. Chem. Soc. 136, 11813–11820 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Faul, M. M., Winneroski, L. L. & Krumrich, C. A. Synthesis of rebeccamycin and 11-dechlororebeccamycin. J. Org. Chem. 64, 2465–2470 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Cambridge Crystallographic Knowledge Centre (CCDC). X-ray crystallographic knowledge of 19: deposition no. CCDC-2201060. https://www.ccdc.cam.ac.uk/data_request/cif (2023).

  • Gerrard, W. 223. Experiments on the interplay of hydroxy compounds and phosphorus and thionyl halides within the absence and within the presence of tertiary bases. Half III. J. Chem. Soc. 848–853 (1945).

  • Gerrand, W. & Hudson, H. R. Rearrangement in alkyl teams throughout substitution reactions. Chem. Rev. 65, 697–716 (1965).

    Article 

    Google Scholar
     

  • Hudson, H. R. Synthesis of optically lively alkyl halides. Synthesis 1969, 112–119 (1969).

  • Fuson, N., Josien, M. L., Powell, R. L. & Utterback, E. The NH stretching vibration and NH–N hydrogen bonding in a number of fragrant compounds. J. Chem. Phys. 20, 145–152 (1952).

    Article 
    CAS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles