Akinwande, D. et al. A evaluate on mechanics and mechanical properties of 2D supplies—Graphene and past. Extrem. Mech. Lett. 13, 42–77 (2017).
Li, Q., Lu, J., Gupta, P. & Qiu, M. Engineering optical absorption in graphene and different 2D supplies: advances and purposes. Adv. Choose. Mater. 7, 1900595 (2019).
Kang, S. et al. 2D semiconducting supplies for digital and optoelectronic purposes: potential and problem. 2D Mater. 7, 022003 (2020).
Lee, J. H., Singer, J. P. & Thomas, E. L. Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012).
Liu, D., Gao, Y., Tong, A. & Hu, S. Absolute photonic band hole in 2D honeycomb annular photonic crystals. Phys. Lett. A 379, 214–217 (2015).
Liu, L., Qing, M., Wang, Y. & Chen, S. Defects in graphene: era, therapeutic, and their results on the properties of graphene: a evaluate. J. Mater. Sci. Technol. 31, 599–606 (2015).
Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).
Yang, G., Li, L., Lee, WingBun & Ng, ManCheung Construction of graphene and its issues: a evaluate. Sci. Technol. Adv. Mater. 19, 613–648 (2018).
Pusey, P. N. & van Megen, W. Section behaviour of concentrated suspensions of almost onerous colloidal spheres. Nature 320, 340–342 (1986).
Herlach, D. M., Klassen, I., Wette, P. & Holland-Moritz, D. Colloids as mannequin programs for metals and alloys: a case examine of crystallization. J. Phys. Condens. Matter 22, 153101 (2010).
Gabrys, P. A., Zornberg, L. Z. & Macfarlane, R. J. Programmable atom equivalents: atomic crystallization as a framework for synthesizing nanoparticle superlattices. Small 15, 1805424 (2019).
de Villeneuve, VolkertW. A. et al. Colloidal hard-sphere crystal development pissed off by giant spherical impurities. Science 309, 1231–1233 (2005).
Weitz, D. A., Schall, P., Cohen, I. & Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440, 319 (2006).
Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).
Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualization of dislocation dynamics in colloidal crystals. Science 305, 1944–1948 (2004).
Pertsinidis, A. & Ling, X. S. Video microscopy and micromechanics research of one- and two-dimensional colloidal crystals. N. J. Phys. 7, 33 (2005).
Semwogerere, D., Prasad, V. & Weeks, E. R. Confocal microscopy of colloids. J. Phys. Condens. Matter 19, 113102 (2007).
Lu, P. J. & Weitz, D. A. Colloidal particles: crystals, glasses, and gels. Annu. Rev. Condens. Matter Phys. 4, 217–233 (2013).
Liu, Y. et al. Direct visualization of atomic-scale graphene development on Cu by environmental transmission electron microscopy. ACS Appl. Mater. Interfaces 12, 52201–52207 (2020).
Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).
Kim, SeungHyun et al. Synthesis and meeting of colloidal particles with sticky dimples. J. Am. Chem. Soc. 134, 16115–16118 (2012).
Kraft, D. J. et al. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131, 1182–1186 (2009).
Gong, Z., Hueckel, T., Yi, Gi. Ra & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017).
Wang, Y. et al. Colloids with valence and particular directional bonding. Nature 491, 51–55 (2012).
Swinkels, P. J. M. et al. Revealing pseudorotation and ring-opening reactions in colloidal natural molecules. Nat. Commun. 12, 2810 (2021).
Stuij, S. et al. Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127, 108001 (2021).
Chen, Q., Bae, SungChul & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).
Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable meeting of hybrid colloids induced by regioselective depletion. Nat. Mater. 19, 1354–1361 (2020).
Noya, E. G., Zubieta, I., Pine, D. J. & Sciortino, F. Meeting of clathrates from tetrahedral patchy colloids with slender patches. J. Chem. Phys. 151, 094502 (2019).
Rao, A. B. et al. Leveraging hierarchical self-assembly pathways for realizing colloidal photonic crystals. ACS Nano 14, 5348–5359 (2020).
He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).
Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of crucial Casimir forces. Nature 451, 172–175 (2008).
Gambassi, A. et al. Crucial Casimir impact in classical binary liquid mixtures. Phys. Rev. E 80, 061143 (2009).
Nguyen, V. D., Dang, M. T., Nguyen, T. A. & Schall, P. Crucial Casimir forces for colloidal meeting. J. Phys. Condens. Matter 28, 043001 (2016).
Dietrich, S. & Maciolek, A. Collective habits of colloids attributable to crucial casimir interactions. Rev. Mod. Phys. 90, 045001 (2018).
Mirzaev, S. Z., Behrends, R., Heimburg, T., Haller, J. & Kaatze, U. Crucial habits of two,6-dimethylpyridine-water: Measurements of particular warmth, dynamic gentle scattering, and shear viscosity. J. Chem. Phys. 124, 144517 (2006).
Noya, E. G., Almarza, NoéG. & Lomba, E. Meeting of trivalent particles underneath confinement: from an unique strong section to a liquid section at low temperature. Smooth Matter 13, 3221–3229 (2017).
Van Nang, L. & Kim, Eui-Tae Controllable synthesis of high-quality graphene utilizing inductively-coupled plasma chemical vapor deposition. J. Electrochem. Soc. 159, K93 (2012).
Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).
Araujo, P. T., Terrones, M. & Dresselhaus, M. S. Defects and impurities in graphene-like supplies. Mater. Immediately 15, 98–109 (2012).
Primo, A. et al. Engineering lively websites on decreased graphene oxide by hydrogen plasma irradiation: Mimicking bifunctional metallic/supported catalysts in hydrogenation reactions. Inexperienced. Chem. 20, 2611–2623 (2018).
Wang, D. et al. Scalable and managed creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties. Carbon 161, 880–891 (2020).
Su, S., Wang, X. & Xue, J. Nanopores in two-dimensional supplies: correct fabrication. Mater. Horiz. 8, 1390–1408 (2021).
Niu, T., Zhou, M., Zhang, J., Feng, Y. & Chen, W. Development intermediates for CVD graphene on Cu(111): carbon clusters and faulty graphene. J. Am. Chem. Soc. 135, 8409–8414 (2013).
Chen, Q. et al. Atomic degree distributed pressure inside graphene divacancies from bond rotations. ACS Nano 9, 8599–8608 (2015).
Stuij, S. G., Labbé-Laurent, M., Kodger, T. E., Maciołek, A. & Schall, P. Crucial Casimir interactions between colloids across the crucial level of binary solvents. Smooth Matter 13, 5233–5249 (2017).
Kim, Y., Ihm, J., Yoon, E. & Lee, Gun-Do Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 84, 075445 (2011).
Robertson, A. W. et al. Stability and dynamics of the tetravacancy in graphene. Nano Lett. 14, 1634–1642 (2014).
Yuan, Q. et al. Magic carbon clusters within the chemical vapor deposition development of graphene. J. Am. Chem. Soc. 134, 2970–2975 (2012).
Wang, H. et al. Morphology results of graphene seeds on the standard of graphene nucleation: quantum chemical molecular dynamics simulations. J. Phys. Chem. C. 125, 5056–5065 (2021).
Zhang, J. et al. Managed development of single-crystal graphene movies. Adv. Mater. 32, 1903266 (2020).
Neophytou, A., Chakrabarti, D. & Sciortino, F. Facile self-assembly of colloidal diamond from tetrahedral patchy particles through ring choice. Proc. Natl Acad. Sci. 118, e2109776118 (2021).
Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).
Li, S., Roy, P., Travesset, A. & Zandi, R. Why giant icosahedral viruses want scaffolding proteins. Proc. Natl Acad. Sci. 115, 10971–10976 (2018).
Irvine, WilliamT. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).
Guerra, R. E., Kelleher, C. P., Hollingsworth, A. D. & Chaikin, P. M. Freezing on a sphere. Nature 554, 346–350 (2018).
Zeng, M. et al. Self-assembly of graphene single crystals with uniform dimension and orientation: the primary 2D super-ordered construction. J. Am. Chem. Soc. 138, 7812–7815 (2016).
Shu, H., Chen, X., Tao, X. & Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition development. ACS Nano 6, 3243–3250 (2012).
Ö Girit, Ça. ğlar et al. Graphene on the edge: stability and dynamics. Science 323, 1705–1708 (2009).
Yves, S., Lemoult, F., Fink, M. & Lerosey, G. Crystalline soda can metamaterial exhibiting Graphene-like Dispersion at subwavelength scale. Sci. Rep. 7, 15359 (2017).
Chen, D., Zhang, G. & Torquato, S. Inverse design of colloidal crystals through optimized patchy interactions. J. Phys. Chem. B 122, 8462–8468 (2018).
Allan, D. B., Caswell, T., Keim, N. C., Wel, C. M. & Verweij, R. W. Smooth-matter/trackpy: Trackpy v0.5.0. Zenodo, https://zenodo.org/document/4682814#.ZBRNGYRBzcs April (2021).
Jonas, H. J., Stuij, S. G., Schall, P. & Bolhuis, P. G. A temperature-dependent crucial Casimir patchy particle mannequin benchmarked onto experiment. J. Chem. Phys. 155, 034902 (2021).
Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Giant-scale experimental and theoretical examine of graphene grain boundary constructions. Phys. Rev. B 92, 205402 (2015).