6 C
New York
Saturday, March 25, 2023

Visualizing defect dynamics by assembling the colloidal graphene lattice


  • Akinwande, D. et al. A evaluate on mechanics and mechanical properties of 2D supplies—Graphene and past. Extrem. Mech. Lett. 13, 42–77 (2017).

    Article 

    Google Scholar
     

  • Li, Q., Lu, J., Gupta, P. & Qiu, M. Engineering optical absorption in graphene and different 2D supplies: advances and purposes. Adv. Choose. Mater. 7, 1900595 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Kang, S. et al. 2D semiconducting supplies for digital and optoelectronic purposes: potential and problem. 2D Mater. 7, 022003 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lee, J. H., Singer, J. P. & Thomas, E. L. Micro-/nanostructured mechanical metamaterials. Adv. Mater. 24, 4782–4810 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, D., Gao, Y., Tong, A. & Hu, S. Absolute photonic band hole in 2D honeycomb annular photonic crystals. Phys. Lett. A 379, 214–217 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, L., Qing, M., Wang, Y. & Chen, S. Defects in graphene: era, therapeutic, and their results on the properties of graphene: a evaluate. J. Mater. Sci. Technol. 31, 599–606 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Banhart, F., Kotakoski, J. & Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 5, 26–41 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, G., Li, L., Lee, WingBun & Ng, ManCheung Construction of graphene and its issues: a evaluate. Sci. Technol. Adv. Mater. 19, 613–648 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pusey, P. N. & van Megen, W. Section behaviour of concentrated suspensions of almost onerous colloidal spheres. Nature 320, 340–342 (1986).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Herlach, D. M., Klassen, I., Wette, P. & Holland-Moritz, D. Colloids as mannequin programs for metals and alloys: a case examine of crystallization. J. Phys. Condens. Matter 22, 153101 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Gabrys, P. A., Zornberg, L. Z. & Macfarlane, R. J. Programmable atom equivalents: atomic crystallization as a framework for synthesizing nanoparticle superlattices. Small 15, 1805424 (2019).

    Article 

    Google Scholar
     

  • de Villeneuve, VolkertW. A. et al. Colloidal hard-sphere crystal development pissed off by giant spherical impurities. Science 309, 1231–1233 (2005).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Weitz, D. A., Schall, P., Cohen, I. & Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440, 319 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualization of dislocation dynamics in colloidal crystals. Science 305, 1944–1948 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Pertsinidis, A. & Ling, X. S. Video microscopy and micromechanics research of one- and two-dimensional colloidal crystals. N. J. Phys. 7, 33 (2005).

    Article 

    Google Scholar
     

  • Semwogerere, D., Prasad, V. & Weeks, E. R. Confocal microscopy of colloids. J. Phys. Condens. Matter 19, 113102 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Lu, P. J. & Weitz, D. A. Colloidal particles: crystals, glasses, and gels. Annu. Rev. Condens. Matter Phys. 4, 217–233 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Liu, Y. et al. Direct visualization of atomic-scale graphene development on Cu by environmental transmission electron microscopy. ACS Appl. Mater. Interfaces 12, 52201–52207 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacanna, S., Irvine, W. T. M., Chaikin, P. M. & Pine, D. J. Lock and key colloids. Nature 464, 575–578 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, SeungHyun et al. Synthesis and meeting of colloidal particles with sticky dimples. J. Am. Chem. Soc. 134, 16115–16118 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kraft, D. J. et al. Self-assembly of colloids with liquid protrusions. J. Am. Chem. Soc. 131, 1182–1186 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Z., Hueckel, T., Yi, Gi. Ra & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Wang, Y. et al. Colloids with valence and particular directional bonding. Nature 491, 51–55 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Swinkels, P. J. M. et al. Revealing pseudorotation and ring-opening reactions in colloidal natural molecules. Nat. Commun. 12, 2810 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuij, S. et al. Revealing polymerization kinetics with colloidal dipatch particles. Phys. Rev. Lett. 127, 108001 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q., Bae, SungChul & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, M., Zheng, X., Grebe, V., Pine, D. J. & Weck, M. Tunable meeting of hybrid colloids induced by regioselective depletion. Nat. Mater. 19, 1354–1361 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noya, E. G., Zubieta, I., Pine, D. J. & Sciortino, F. Meeting of clathrates from tetrahedral patchy colloids with slender patches. J. Chem. Phys. 151, 094502 (2019).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Rao, A. B. et al. Leveraging hierarchical self-assembly pathways for realizing colloidal photonic crystals. ACS Nano 14, 5348–5359 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • He, M. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hertlein, C., Helden, L., Gambassi, A., Dietrich, S. & Bechinger, C. Direct measurement of crucial Casimir forces. Nature 451, 172–175 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Gambassi, A. et al. Crucial Casimir impact in classical binary liquid mixtures. Phys. Rev. E 80, 061143 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Nguyen, V. D., Dang, M. T., Nguyen, T. A. & Schall, P. Crucial Casimir forces for colloidal meeting. J. Phys. Condens. Matter 28, 043001 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietrich, S. & Maciolek, A. Collective habits of colloids attributable to crucial casimir interactions. Rev. Mod. Phys. 90, 045001 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Mirzaev, S. Z., Behrends, R., Heimburg, T., Haller, J. & Kaatze, U. Crucial habits of two,6-dimethylpyridine-water: Measurements of particular warmth, dynamic gentle scattering, and shear viscosity. J. Chem. Phys. 124, 144517 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Noya, E. G., Almarza, NoéG. & Lomba, E. Meeting of trivalent particles underneath confinement: from an unique strong section to a liquid section at low temperature. Smooth Matter 13, 3221–3229 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Van Nang, L. & Kim, Eui-Tae Controllable synthesis of high-quality graphene utilizing inductively-coupled plasma chemical vapor deposition. J. Electrochem. Soc. 159, K93 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Araujo, P. T., Terrones, M. & Dresselhaus, M. S. Defects and impurities in graphene-like supplies. Mater. Immediately 15, 98–109 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Primo, A. et al. Engineering lively websites on decreased graphene oxide by hydrogen plasma irradiation: Mimicking bifunctional metallic/supported catalysts in hydrogenation reactions. Inexperienced. Chem. 20, 2611–2623 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wang, D. et al. Scalable and managed creation of nanoholes in graphene by microwave-assisted chemical etching for improved electrochemical properties. Carbon 161, 880–891 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Su, S., Wang, X. & Xue, J. Nanopores in two-dimensional supplies: correct fabrication. Mater. Horiz. 8, 1390–1408 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Niu, T., Zhou, M., Zhang, J., Feng, Y. & Chen, W. Development intermediates for CVD graphene on Cu(111): carbon clusters and faulty graphene. J. Am. Chem. Soc. 135, 8409–8414 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chen, Q. et al. Atomic degree distributed pressure inside graphene divacancies from bond rotations. ACS Nano 9, 8599–8608 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stuij, S. G., Labbé-Laurent, M., Kodger, T. E., Maciołek, A. & Schall, P. Crucial Casimir interactions between colloids across the crucial level of binary solvents. Smooth Matter 13, 5233–5249 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Kim, Y., Ihm, J., Yoon, E. & Lee, Gun-Do Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 84, 075445 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Robertson, A. W. et al. Stability and dynamics of the tetravacancy in graphene. Nano Lett. 14, 1634–1642 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yuan, Q. et al. Magic carbon clusters within the chemical vapor deposition development of graphene. J. Am. Chem. Soc. 134, 2970–2975 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, H. et al. Morphology results of graphene seeds on the standard of graphene nucleation: quantum chemical molecular dynamics simulations. J. Phys. Chem. C. 125, 5056–5065 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, J. et al. Managed development of single-crystal graphene movies. Adv. Mater. 32, 1903266 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Neophytou, A., Chakrabarti, D. & Sciortino, F. Facile self-assembly of colloidal diamond from tetrahedral patchy particles through ring choice. Proc. Natl Acad. Sci. 118, e2109776118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bausch, A. R. et al. Grain boundary scars and spherical crystallography. Science 299, 1716–1718 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, S., Roy, P., Travesset, A. & Zandi, R. Why giant icosahedral viruses want scaffolding proteins. Proc. Natl Acad. Sci. 115, 10971–10976 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Irvine, WilliamT. M., Vitelli, V. & Chaikin, P. M. Pleats in crystals on curved surfaces. Nature 468, 947–951 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guerra, R. E., Kelleher, C. P., Hollingsworth, A. D. & Chaikin, P. M. Freezing on a sphere. Nature 554, 346–350 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zeng, M. et al. Self-assembly of graphene single crystals with uniform dimension and orientation: the primary 2D super-ordered construction. J. Am. Chem. Soc. 138, 7812–7815 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shu, H., Chen, X., Tao, X. & Ding, F. Edge structural stability and kinetics of graphene chemical vapor deposition development. ACS Nano 6, 3243–3250 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ö Girit, Ça. ğlar et al. Graphene on the edge: stability and dynamics. Science 323, 1705–1708 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Yves, S., Lemoult, F., Fink, M. & Lerosey, G. Crystalline soda can metamaterial exhibiting Graphene-like Dispersion at subwavelength scale. Sci. Rep. 7, 15359 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, D., Zhang, G. & Torquato, S. Inverse design of colloidal crystals through optimized patchy interactions. J. Phys. Chem. B 122, 8462–8468 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Allan, D. B., Caswell, T., Keim, N. C., Wel, C. M. & Verweij, R. W. Smooth-matter/trackpy: Trackpy v0.5.0. Zenodo, https://zenodo.org/document/4682814#.ZBRNGYRBzcs April (2021).

  • Jonas, H. J., Stuij, S. G., Schall, P. & Bolhuis, P. G. A temperature-dependent crucial Casimir patchy particle mannequin benchmarked onto experiment. J. Chem. Phys. 155, 034902 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ophus, C., Shekhawat, A., Rasool, H. & Zettl, A. Giant-scale experimental and theoretical examine of graphene grain boundary constructions. Phys. Rev. B 92, 205402 (2015).

    Article 
    ADS 

    Google Scholar
     

  • Related Articles

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Latest Articles