Powell, C. J. Progress of floor evaluation and the event of databases and modeling software program for Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Microsc. Right now 24, 16 (2016).
Powell, C. J. Enhancements within the reliability of X-ray photoelectron spectroscopy for floor evaluation. J. Chem. Educ. 81, 1734 (2004).
Fadley, C. S. X-ray photoelectron spectroscopy: progress and views. J. Electron Spectros. Relat. Phenomena 178–179, 2 (2010).
Hofmann, S. Auger- and X-ray Photoelectron Spectroscopy in Supplies Science (Springer-Verlag, 2013).
Hűfner, S. Photoelectron Spectroscopy: Ideas and Purposes (Springer-Verlag, 2003).
Briggs, D. & Grant, J. T. (eds) Floor Evaluation by Auger and X-ray Photoelectron Spectroscopy (IM Publications, 2003).
Baer, D. R. et al. Introduction to topical assortment: reproducibility challenges and options with a give attention to guides to XPS evaluation. J. Vac. Sci. Technol. A 39, 021601 (2021).
Greczynski, G. & Hultman, L. A step-by-step information to carry out X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022). This work is a complete information to XPS.
Main, G. H., Fernandez, V., Fairley, N., Smith, E. F. & Linford, M. R. Information to XPS information evaluation: making use of applicable constraints to artificial peaks in XPS peak becoming. J. Vac. Sci. Technol. A 40, 063201 (2022).
Bagus, P. S., Ilton, E. S. & Nelin, C. J. The interpretation of XPS spectra: insights into supplies properties. Surf. Sci. Rep. 68, 273–304 (2013).
Berni, M., Bontempi, M., Marchiori, G. & Gambardella, A. Roughness conformality throughout skinny movies deposition onto tough substrates: a quantitative research. Skinny Strong Movies 709, 138258 (2020).
Hertz, H. Ueber sehr schnelle electrische Schwingungen [German]. Ann. Phys. 267, 421 (1887).
Einstein, A. On a Heuristic viewpoint concerning the creation and conversion of sunshine. Ann. Phys. 17, 132–148 (1905).
Ashcroft, N. W. & Mermin, N. D. Strong State Physics (Saunders Faculty Publishing, 1976).
Ishii, H., Sugiyama, Okay., Ito, E. & Seki, Okay. Vitality stage alignment and interfacial digital constructions at natural/steel and natural/natural interfaces. Adv. Mater. 11, 605–625 (1999).
Cahen, D. & Kahn, A. Electron energetics at surfaces and interfaces: ideas and experiments. Adv. Matter 15, 271 (2003).
Meitner, L. Über die Entstehung der β-Strahl-Spektren radioaktiver Substanzen [German]. Z. Phys. 9, 131 (1922).
Auger, P. Sur l’effet photoélectrique composé [French]. J. Phys. Radium 6, 205–208 (1925).
Sokolowski, E., Nordling, C. & Siegbahn, Okay. Chemical shift impact in interior digital ranges of Cu resulting from oxidation. Phys. Rev. 110, 776 (1958).
Hagström, S., Nordling, C. & Siegbahn, Okay. Electron spectroscopy for chemical analyses. Phys. Lett. 9, 235–236 (1964).
Siegbahn, Okay. et al. ESCA — Atomic, Molecular and Strong State Construction Studied by Technique of Electron Spectroscopy (Almquist & Wiksells, 1967).
Hagström, S., Nordling, C. & Siegbahn, Okay. Electron spectroscopic dedication of the chemical valence state. Z. Phys. 178, 439–444 (1964).
Fahlman, A. et al. Electron spectroscopy and chemical binding. Nature 210, 4–8 (1966).
Drummond, I. W. in Floor Evaluation by Auger and X-ray Photoelectron Spectroscopy (eds Briggs, D. & Grant, J. T.) 117–144 (IM Publications, 2003).
Egelhoff, W. F. Jr Core-level binding-energy shifts at surfaces and in solids. Surf. Sci. Rep. 6, 253–415 (1987). This work presents an exceptionally good overview of all fundamental ideas associated to XPS resembling binding power, and preliminary and ultimate state results.
Pauling, L. The character of the chemical bond. IV. The power of single bonds and the relative electronegativity of atoms. J. Am. Chem. Soc. 54, 3570–3582 (1932).
Worldwide Group for Standardization. ISO 18115-1, Floor Chemical Evaluation — Vocabulary, Half 1 — Normal Phrases and Phrases Utilized in Spectroscopy (ISO, 2013).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths for 31 supplies. Surf. Interf. Anal. 11, 577 (1988).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths II. Information for 27 parts over the 50–2000 eV vary. Surf. Interf. Anal. 17, 911 (1991).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths III. Information for 15 natural compounds over the 50–2000 eV vary. Surf. Interf. Anal. 17, 927 (1991).
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths IV. Analysis of calculated IMFPs and of the predictive IMFP method TPP-2 for electron energies between 50 and 2000 eV. Surf. Interf. Anal. 21, 165 (1993).
Powell, C. J. Sensible information for inelastic imply free paths, efficient attenuation lengths, imply escape depths, and knowledge depths in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38, 023209 (2020). This essential paper explains delicate variations between varied phrases ceaselessly utilized in XPS jargon.
Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths. IX. Information for 41 elemental solids over the 50 eV to 30 keV vary. Surf. Interf. Anal. 43, 689–713 (2011). This work is an especially helpful useful resource for electron inelastic imply free paths.
Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths. Information for 41 elemental solids over the 50 eV to 200 keV vary with the relativistic full Penn algorithm. Surf. Interf. Anal. 47, 871 (2015).
Shinotsuka, H., Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic imply free paths. XII. Information for 42 inorganic compounds over the 50 eV to 200 keV vary with the complete Penn algorithm. Surf. Interf. Anal. 51, 427 (2019).
Tanuma, S. et al. Experimental dedication of electron inelastic imply free paths in 13 elemental solids within the 50 to 5000 eV power vary by elastic-peak electron spectroscopy. Surf. Interf. Anal. 37, 833 (2005).
Werner, W. S. M., Tomastik, C., Cabela, T., Richter, G. & Störi, H. Elastic electron reflection for dedication of the inelastic imply free path of medium power electrons in 24 elemental solids for energies between 50 and 3400 eV. J. Electron. Spectros. Relat. Phenomena 113, 127 (2001).
Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: a regular information base for electron inelastic imply free paths in solids. Surf. Interf. Anal. 1, 2–11 (1979).
Seah, M. P. Easy common curve for the power‐dependent electron attenuation size for all supplies. Surf. Interf. Anal. 44, 1353–1359 (2012).
Huchital, D. A. & McKeon, R. T. Use of an electron flood gun to cut back floor charging in X‐ray photoelectron spectroscopy. Appl. Phys. Lett. 20, 158 (1972).
Baer, D. R. et al. XPS information: cost neutralization and binding power referencing for insulating samples. J. Vac. Sci. Technol. A 38, 031204 (2020).
Edwards, L., Mack, P. & Morgan, D. J. Latest advances in twin mode cost compensation for XPS evaluation. Surf. Interf. Anal. 51, 925–933 (2019).
Greczynski, G., Petrov, I., Greene, J. E. & Hultman, L. Al capping layers for non-destructive X-ray photoelectron spectroscopy analyses of transition-metal nitride skinny movies. J. Vac. Sci. Technol. A 33, 05E101 (2015).
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I. & Greene, J. E. The Si3N4/TiN Interface: 1. TiN(001) grown and analyzed in situ utilizing angle-resolved X-ray photoelectron spectroscopy. Surf. Sci. Spectra 19, 33 (2012).
Lewin, E., Counsell, J. & Patscheider, J. Spectral artefacts put up sputter-etching and the way to deal with them — a case research of XPS on nitride-based coatings utilizing monoatomic and cluster ion beams. Appl. Surf. Sci. 442, 487 (2018). This work is an effective comparability of how etching with Ar+ ions and Ar ion clusters impacts floor chemistry for nitride-based skinny movies.
Seah, M. P. in Floor Evaluation by Auger and X-ray Photoelectron Spectroscopy (eds Briggs, D. & Grant, J. T.) 167–189 (IM Publications, 2003).
Worldwide Group for Standardization. ISO 15472:2010, Floor chemical evaluation — X-ray photoelectron spectrometers — Calibration of power scales (ISO, 2010).
Stevie, F. A., Garcia, R., Shallenberger, J., Newman, J. G. & Donley, C. L. Pattern dealing with, preparation and mounting for XPS and different floor analytical strategies. J. Vac. Sci. Technol. A 38, 063202 (2020). This work is a superb overview of all points associated to pattern preparation and dealing with.
Main, G. H. et al. Sensible information for curve becoming in X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38, 061203 (2020). This work is a really complete supply of knowledge for peak becoming XPS spectra.
Gadzuk, J. W. & Doniach, S. A soluble rest mannequin for core stage spectroscopy on adsorbed atoms. Surf. Sci. 77, 154855 (1978).
Veal, B. W. & Paulikas, A. P. Closing-state screening and chemical shifts in photoelectron spectroscopy. Phys. Rev. B 31, 5399 (1985).
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I. & Greene, J. E. The Si3N4/TiN interface: an introduction to a collection of ultrathin movies grown and analyzed in situ utilizing X-ray photoelectron spectroscopy. Surf. Sci. Spectra 19, 30–32 (2012).
Naumkin, A. V., Kraut-Vass, A., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray photoelectron spectroscopy database, model 4.1. Nationwide Institute of Requirements and Know-how (2012).
Crist, B. V. XPS in trade — issues with binding energies in journals and binding power databases. J. Electron Spectros. Relat. Phenomena 231, 75–87 (2019).
Baer, D. R. & Shard, A. G. Position of constant terminology in XPS reproducibility. J. Vac. Sci. Technol. A 38, 031203 (2020).
Haasch, R. T. & Abraham, D. P. LiNi0.8Co0.2O2-based excessive energy lithium-ion battery optimistic electrodes analyzed by X-ray photoelectron spectroscopy: 1. Contemporary electrode. Surf. Sci. Spectra 23, 118 (2016).
Greczynski, G. & Hultman, L. Self-consistent modeling of X-ray photoelectron spectra from air-exposed polycrystalline TiN skinny movies. Appl. Surf. Sci. 387, 294 (2016).
Engelhard, M. H., Baer, D. R., Herrera-Gomez, A. & Sherwood, P. M. A. Introductory information to backgrounds in XPS spectra and their impression on figuring out peak intensities. J. Vac. Sci. Technol. A 38, 063203 (2020).
Repoux, M. Comparability of background removing strategies for XPS. Surf. Interf. Anal. 18, 567–570 (1992).
Brundle, C. R. & Crist, B. V. X-ray photoelectron spectroscopy: a perspective on quantitation accuracy for composition evaluation of homogeneous supplies. J. Vac. Sci. Technol. A 38, 041001 (2020).
Baker, M. 1500 scientists carry the lid on reproducibility. Nature 533, 452 (2016).
Briggs, D. & Seah, M. P. Sensible Floor Evaluation: Auger and X-ray Photoelectron Spectroscopy Vol. 1 233–239 555–586 (Wiley, 1990).
Shirley, D. A. Excessive-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).
Proctor, A. & Sherwood, P. M. A. Information evaluation strategies in X-ray photoelectron spectroscopy. Anal. Chem. 54, 13 (1982).
Tougaard, S. Universality lessons of inelastic electron scattering cross-sections. Surf. Interf. Anal. 25, 137 (1997).
Fairley, N. & Carrick, A. The Casa Cookbook Half 1: Recipes for XPS Information Processing 147–167 (Acolyte Science, 2005).
Citrin, P. H. & Hamann, D. R. Phonon broadening of X-ray photoemission line shapes in solids and its independence of gap state lifetimes. Phys. Rev. B 15, 2923 (1977).
Powell, C. J. & Jablonski, A. Progress in quantitative floor evaluation by X-ray photoelectron spectroscopy: present standing and views. J. Electron. Spectros. Relat. Phenomena 178–179, 331–346 (2010).
Brundle, C. R., Crist, B. V. & Bagus, P. S. Accuracy limitations for composition evaluation by XPS utilizing relative peak intensities: LiF for instance. J. Vac. Sci. Technol. A (2021).
Shard, A. G. Sensible guides for x-ray photoelectron spectroscopy: quantitative XPS. J. Vac. Sci. Technol. A 38, 041201 (2020).
Jablonski, A. & Powell, C. J. Efficient attenuation lengths for quantitative dedication of floor composition by Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Electron Spectros. Relat. Phenomena 281, 1–12 (2017).
Tougaard, S. Floor nanostructure dedication by X-ray photoemission spectroscopy peak form evaluation. J. Vac. Sci. Technol. A 14, 1415–1423 (1996).
Tougaard, S. Sensible information to the usage of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A (2021).
Zborowski, C., Vanleenhove, A. & Conard, T. Comparability and complementarity of QUASES-Tougaard and SESSA software program. Appl. Surf. Sci. (2022).
Smekal, W., Werner, W. S. M. & Powell, C. J. Simulation of electron spectra for floor evaluation (SESSA): a novel software program device for quantitative Auger-electron spectroscopy and X-ray photoelectron spectroscopy. Surf. Interf. Anal. 37, 1059–1067 (2005).
Werner, W. S. M. & Powell, C. J. Purposes of the Nationwide Institute of Requirements and Know-how (NIST) database for the simulation of electron spectra for floor evaluation for quantitative x-ray photoelectron spectroscopy of nanostructures. J. Vac. Sci. Technol. A 39, 063205 (2021).
Hellgren, N. et al. X-ray photoelectron spectroscopy evaluation of TiBx (1.3 ≤ x ≤ 3.0) skinny movies. J. Vac. Sci. Technol. A (2021).
Strohmeier, B. R. An ESCA technique for figuring out the oxide thickness on aluminum alloys. Surf. Interf. Anal. 15, 51–56 (1990).
Carlson, T. A. Fundamental assumptions and up to date developments in quantitative XPS. Surf. Interf. Anal. 4, 125–134 (1982).
Hofmann, S. Auger- and X-ray Photoelectron Spectroscopy in Supplies Science Ch. 4.3.3 (Springer-Verlag, 2013).
Unarunotai, S. et al. Layer-by-layer switch of a number of, massive space sheets of graphene grown in multilayer stacks on a single SiC wafer. ACS Nano 4, 5591 (2010).
Madsen, Okay. E. et al. Origin of enhanced cyclability in covalently modified LiMn1.5Ni0.5O4 cathodes. ACS Appl. Mater. Interfaces. 11, 39890 (2019).
Hanifpour, F. et al. Operando quantification of ammonia produced from computationally-derived transition steel nitride electro-catalysts. J. Catal. 413, 956 (2022).
Hellgren, N., Haasch, R. T., Schmidt, S., Hultman, L. & Petrov, I. Interpretation of X-ray photoelectron spectra of carbon-nitride skinny movies: new insights from in situ XPS. Carbon 108, 242–252 (2016).
Hellgren, N. et al. Digital construction of carbon nitride skinny movies studied by X-ray spectroscopy strategies. Skinny Strong Movies 471, 19–34 (2005).
Hellgren, N., Johansson, M. P., Broitman, E., Hultman, L. & Sundgren, J.-E. Position of nitrogen within the formation of onerous and elastic CNx skinny movies by reactive magnetron sputtering. Phys. Rev. B 57, 5164–5169 (1999).
Patscheider, J., Hellgren, N., Haasch, R. T., Petrov, I. & Greene, J. E. Digital construction of the SiNx/TiN interface: a mannequin system for superhard nanocomposites. Phys. Rev. B (2011).
Greczynski, G., Mraz, S., Hultman, L. & Schneider, J. M. Substantial distinction in goal floor chemistry between reactive DC and excessive energy impulse magnetron sputtering. J. Phys. D Appl. Phys. 51, 05LT01 (2018).
Greczynski, G., Primetzhofer, D., Lu, J. & Hultman, L. Core-level spectra and binding energies of transition steel nitrides by non-destructive X-ray photoelectron spectroscopy by means of capping layers. Appl. Surf. Sci. 396, 347 (2017).
Greczynski, G., Mráz, S., Hultman, L. & Schneider, J. M. Native goal chemistry throughout reactive DC magnetron sputtering studied by ex situ X-ray photoelectron spectroscopy. Appl. Phys. Lett. 111, 021604 (2017).
Prieto, P. & Kirby, R. E. X‐ray photoelectron spectroscopy research of the distinction between reactively evaporated and direct sputter‐deposited TiN movies and their oxidation properties. J. Vac. Sci. Technol. A 13, 2819 (1995).
Biwer, B. M. & Bernasek, S. L. Electron spectroscopic research of the iron floor and its interplay with oxygen and nitrogen. J. Electron. Spectros. Relat. Phenomena 40, 339 (1986).
Haasch, R. T. et al. X-ray and ultraviolet photoelectron spectroscopic analyses of single-crystal TiN(001). I. Evaluation of as-deposited layers. Surf. Sci. Spectra 7, 193–203 (2000).
NIST. NIST Chemistry WebBook. Nationwide Institute of Requirements and Know-how (2023).
Main, G. H. et al. Evaluation of the frequency and nature of inaccurate X-ray photoelectron spectroscopy analyses within the scientific literature. J. Vac. Sci. Technol. A 38, 061203 (2020).
Herrera-Gomez, A. Uncertainties in photoemission peak becoming accounting for the covariance with background parameters. J. Vac. Sci. Technol. A 38, 033211 (2020).
Jain, V., Biesinger, M. C. & Linford, M. R. The Gaussian–Lorentzian sum, product, and convolution (Voigt) capabilities within the context of peak becoming X-ray photoelectron spectroscopy (XPS) slender scans. Appl. Surf. Sci. 447, 548–553 (2018). This work is a superb supply of details about varied peak capabilities utilized in peak becoming XPS spectra.
Greczynski, G. & Hultman, L. X-ray photoelectron spectroscopy: in the direction of dependable binding power referencing. Prog. Mat. Sci. 107, 100591 (2020). This overview article presents a particular emphasis on the cost referencing subject in XPS.
Greczynski, G. & Hultman, L. Affect of pattern storage sort on adventitious carbon and native oxide progress: X-ray photoelectron spectroscopy research. Vacuum 205, 111463 (2022).
Baer, D., Gaspar, D. J., Engelhard, M. H. & Lea, A. S. in Floor Evaluation by Auger and X-ray Photoelectron Spectroscopy (eds Briggs, D. & Grant, J. T.) 211–234 (IM Publications, 2003).
Conard, T., Vanleenhove, A. & van der Heide, P. Reaching reproducible information: examples from floor evaluation in semiconductor expertise. J. Vac. Sci. Technol. A 38, 033206 (2020).
Greczynski, G., Mráz, S., Hultman, L. & Schneider, J. M. Unintentional carbide formation evidenced throughout high-vacuum magnetron sputtering of transition steel nitride skinny movies. Appl. Surf. Sci. 385, 356 (2016).
Greczynski, G., Mráz, S., Hultman, L. & Schneider, J. M. Venting temperature determines floor chemistry of magnetron sputtered TiN movies. Appl. Phys. Lett. 108, 041603 (2016).
Betz, G. Alloy sputtering. Surf. Sci. 92, 283 (1980).
Tarng, M. L. & Wehner, G. Okay. Alloy sputtering research with in situ Auger electron spectroscopy. J. Appl. Phys. 42, 2449 (1971).
Wang, Y. X. & Holloway, P. H. Impact of ion sputtering on the interface chemistry and electrical properties of Au/n‐GaAs(100) Schottky contacts. J. Vac. Sci. Technol. A 2, 567 (1984).
Hammer, G. E. & Shemenski, R. M. Preferential sputtering of brass studied by AES and XPS. J. Vac. Sci. Technol. A 2, 1132 (1984).
Oswald, S. & Brückner, W. XPS depth profile evaluation of non-stoichiometric NiO movies. Surf. Interf. Anal. 36, 17–22 (2004).
Steinberger, R. et al. XPS research of the results of long-term Ar+ ion and Ar cluster sputtering on the chemical degradation of hydrozincite and iron oxide. Corros. Sci. 99, 66–75 (2015).
Xie, F. Y. et al. XPS research on floor discount of tungsten oxide nanowire movie by Ar+ bombardment. J. Electron Spectros. Relat. Phenomena 185, 112–118 (2012).
Simpson, R., White, R. G., Watts, J. F. & Baker, M. A. XPS investigation of monatomic and cluster argon ion sputtering of tantalum pentoxide. Appl. Surf. Sci. 405, 79–87 (2017).
Ahlberg, P. et al. Defect formation in graphene throughout low-energy ion bombardment. APL Mater. 4, 046104 (2016).
Sundberg, J. et al. Understanding the results of sputter injury in W–S skinny movies by HAXPES. Appl. Surf. Sci. 305, 203–213 (2014).
Lewin, E., Gorgoi, M., Schäfers, F., Svensson, S. & Jansson, U. Affect of sputter injury on the XPS evaluation of metastable nanocomposite coatings. Surf. Coat. Technol. 204, 455–462 (2009).
Greczynski, G. & Hultman, L. In direction of dependable X-ray photoelectron spectroscopy: sputter-damage results in transition steel borides, carbides, nitrides, and oxides. Appl. Surf. Sci. 542, 148599 (2021).
Koenig, M. F. & Grant, J. T. Sign‐to‐noise measurement in X‐ray photoelectron spectroscopy. Surf. Interf. Anal. 7, 217 (1985).
Mähl, S., Neumann, M., Dieckhoff, S., Schlett, V. & Baalmann, A. Characterisation of the VG ESCALAB instrumental broadening capabilities by XPS measurements on the Fermi fringe of silver. J. Electron Spectros. Relat. Phenomena 85, 197 (1997).
Cazaux, J. Mechanisms of charging in electron spectroscopy. J. Electron Spectros. Relat. Phenomena 105, 155 (1999).
Baer, D. R., Engelhard, M. H., Gaspar, D. J., Lea, A. S. & Windisch, C. F. Jr. Use and limitations of electron flood gun management of floor potential throughout XPS: two non‐homogeneous pattern sorts. Surf. Interf. Anal. 33, 781–790 (2002). This work is an excellent illustration of sensible features of pattern charging and the usage of flood weapons.
Tielsch, B. J., Fulghum, J. E. & Surman, D. J. Differential charging in XPS. Half II: pattern mounting and X‐ray flux results on heterogeneous samples. Surf. Interf. Anal. 24, 459–468 (1996).
Tielsch, B. J. & Fulghum, J. E. Differential charging in XPS. Half I: demonstration of lateral charging in a bulk insulator utilizing imaging XPS. Surf. Interf. Anal. 24, 422–427 (1996).
Tielsch, B. J. & Fulghum, J. E. Differential charging in XPS. Half III. A comparability of charging in skinny polymer overlayers on conducting and non‐conducting substrates. Surf. Interf. Anal. 25, 904–912 (1997).
Schön, G. Excessive decision Auger electron spectroscopy of metallic copper. J. Electron. Spectrosc. 1, 377 (1973).
Richter, Okay. & Peplinski, B. Vitality calibration of electron spectrometers. J. Electron. Spectrosc. 13, 69 (1978).
Chook, R. J. & Swift, P. Vitality calibration in electron spectroscopy and the re-determination of some reference electron binding energies. J. Electron. Spectrosc. 21, 227 (1980).
Anthony, M. T. & Seah, M. P. XPS: power calibration of electron spectrometers. 1 — An absolute, traceable power calibration and the supply of atomic reference line energies. Surf. Interf. Anal. 6, 95 (1984).
Crist, B. V. Handbooks of Monochromatic XPS Spectra — The Components and Native Oxides Vol. 1 (XPS, 1999).
Swift, P. Adventitious carbon — the panacea for power referencing? Surf. Interf. Anal. 4, 47–51 (1982).
Hnatowich, D. J., Hudis, J., Perlman, M. L. & Ragaini, R. C. Dedication of charging impact in photoelectron spectroscopy of nonconducting solids. J. Appl. Phys. 42, 4883–4886 (1971).
Johansson, G., Hedman, J., Berndtsson, A., Klasson, M. & Nilsson, R. Calibration of electron spectra. J. Electron. Spectrosc. 2, 295 (1973).
Dianis, W. P. & Lester, J. E. Exterior requirements in X-ray photoelectron spectroscopy. Comparability of gold, carbon, and molybdenum trioxide. Anal. Chem. 45, 1416–1420 (1973).
Nordberg, R., Brecht, H., Albridge, R. G., Fahlman, A. & Van Wazer, J. R. Binding power of the “2p” electrons of silicon in varied compounds. Inorg. Chem. 9, 2469–2474 (1970).
Kinoshita, S., Ohta, T. & Kuroda, H. Feedback on the power calibration in X-ray photoelectron spectroscopy. Bull. Chem. Soc. Jpn. 49, 1149–1150 (1976).
Greczynski, G. & Hultman, L. C 1s peak of adventitious carbon aligns to the vacuum stage: dire penalties for materials’s bonding task by photoelectron spectroscopy. ChemPhysChem 18, 1507 (2017).
Greczynski, G. & Hultman, L. Compromising science by ignorant instrument calibration — must revisit half a century of printed XPS information. Angew. Chem. Int. Ed. 59, 5002 (2020).
Greczynski, G. & Hultman, L. Dependable dedication of chemical state in X-ray photoelectron spectroscopy primarily based on pattern–work–perform referencing to adventitious carbon: resolving the parable of obvious fixed binding power of the C 1s peak. Appl. Surf. Sci. 451, 99 (2018).
Greczynski, G. & Hultman, L. The identical chemical state of carbon offers rise to 2 peaks in X-ray photoelectron spectroscopy. Sci. Rep. 11, 11195 (2021).
Greczynski, G. & Hultman, L. Referencing to adventitious carbon in X-ray photoelectron spectroscopy: can differential charging clarify C 1s peak shifts? Appl. Surf. Sci. 606, 154855 (2022).
Zalar, A. Improved depth decision by pattern rotating throughout Auger electron spectroscopy depth profiling. Skinny Strong Movies 124, 223 (1985).
Zalar, A. & Hofmann, S. Comparability of rotational depth profiling with AES and XPS. Appl. Surf. Sci. 68, 361–367 (1993).
Kalha, C. et al. Laborious X-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. J. Phys. Condens. Matter 33, 233001 (2021).
Greczynski, G., Kindlund, H., Petrov, I., Greene, J. & Hultman, L. Sputter-cleaned epitaxial VxMo1–xNy/MgO(001) skinny movies analyzed by X-ray photoelectron spectroscopy: 1. Single-crystal V0.48Mo0.52N0.64. Surf. Sci. Spectra 20, 68 (2013).
Evans, S. Work perform measurements by X-Pe spectroscopy, and their relevance to the calibration of X-Pe spectra. Chem. Phys. Lett. 23, 134–138 (1973).
Wagner, C. D. Chemical shifts of Auger traces, and the Auger parameter. Faraday Talk about. Chem. Soc. 60, 291–300 (1975).
Wagner, C. D. Auger parameter in electron spectroscopy for the identification of chemical species. Anal. Chem. 47, 1201–1203 (1975).
Stevie, F. A. & Donley, C. L. Introduction to X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A 38, 063204 (2020).
Yamada, I., Matsuo, J., Toyoda, N., Aoki, T. & Seki, T. Progress and purposes of cluster ion beam expertise. Curr. Opin. Strong State Mater. Sci. 19, 12–18 (2015).
Fisher, G. L., Dickinson, M., Bryan, S. R. & Moulder, J. C60 sputtering of organics: a research utilizing TOF-SIMS, XPS and nanoindentation. Appl. Surf. Sci. 255, 819–823 (2008).
Miyayama, T. et al. X-ray photoelectron spectroscopy research of polyimide skinny movies with Ar cluster ion depth profiling. J. Vac. Sci. Technol. A 28, L1–L4 (2010).
Barlow, A. J., Portoles, J. F. & Cumpson, P. J. Noticed injury throughout argon gasoline cluster depth profiles of compound semiconductors. J. Appl. Phys. 116, 054908 (2014).